Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T10:07:04.576Z Has data issue: false hasContentIssue false

Refinement of the Crystal Structure of Cronstedtite-2H2

Published online by Cambridge University Press:  01 January 2024

Jiří Hybler*
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha 8, Czech Republic
Václav Petříček
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha 8, Czech Republic
Jan Fábry
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha 8, Czech Republic
Slavomil Ďurovič
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-84236 Bratislava, Slovakia
*
*E-mail address of corresponding author: hybler@fzu.cz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The crystal structure of cronstedtite-2H2 was refined in a hexagonal cell, space group P63, Z = 2, using two acicular crystals from Wheal Maudlin, Cornwall, England, and from Pribram, Czech Republic. The Wheal Maudlin sample has the chemical composition (Fe2.2912+Fe0.7093+)(Si1.298Fe0.7073+Al0.004)O5(OH)4 and the Příbram sample has the composition (Fe2.2692+Fe0.7313+)(Si1.271Fe0.7243+Al0.005)O5(OH)4. The results of refinements are as follows: a = 5.500(1), c = 14.163(2) Å, V = 371.08(8) Å3, R = 3.83%, from 381 independent reflections, and a = 5.4927(1), c = 14.1481(2) Å, V = 369.70(4) Å3, R = 4.77%, from 1088 independent reflections for the Wheal Maudlin and Příbram samples, respectively. The best Fovs.Fc agreement was achieved when the structure was interpreted as merohedral twin; several possible twinning laws are discussed. The cronstedtite layer consists of one tetrahedral sheet and one octahedral sheet. There is one octahedral (M1) position, occupied by Fe only, and two tetrahedral (T1, T2) positions in the structure. Refinement of occupancy of tetrahedral sites led to values Si:Fe = 0.45:0.55(1) (Wheal Maudlin) and 0.432:0.568(8) (Příbram) in T1, and Si: Fe = 0.99:0.01(1) (Wheal Maudlin) and 0.888:0.112(7) (Příbram) in 72. Whereas the size of T1 is reasonable (average dT1-O = 1.693 Å (Wheal Maudlin), 1.691 Å (Příbram)), T2 is unusually large: (dT2-O= 1.740 Å (Wheal Maudlin), 1.737 Å (Příbram)) with respect to the small or almost zero Fe content. As an explanation, an alternative structure model comprising a certain amount of vacancies in T2 is presented. The tetrahedral rotation angle α is highly positive (+12.1° and +12.5° for the Wheal Maudlin and Příbram samples, respectively), and the layer belongs to the Franzini type A. Distortion parameters of octahedra and tetrahedra are given for both samples. One hydrogen atom engaged in the hydrogen bond was located in the Wheal Maudlin sample.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Allmann, R. and Donnay, G., (1973) The crystal structure of jugoldite Mineralogical Magazine 39 271281 10.1180/minmag.1973.039.303.03.Google Scholar
Anderson, C.S. and Bailey, S.W., (1981) A new cation ordering pattern in amesite-2H 2 American Mineralogist 66 185 195.Google Scholar
Angel, R.J. and Woodland, A.B., (1998) Crystal structure of spinelloid II in the system Fe3O4-Fe2SiO4 European Journal of Mineralogy 10 607611 10.1127/ejm/10/3/0607.Google Scholar
Arakheeva, A.V. and Karpinskii, O.G., (1987) Crystal structure of the ternary hexagonal Ca ferrite Ca3.0Fe14.82O25 Kristallografiya 32 5961 in Russian.Google Scholar
Bailey, S.W., (1969) Polytypism of trioctahedral 1:1 layer silicates Clays and Clay Minerals 17 355371 10.1346/CCMN.1969.0170605.Google Scholar
Bailey, S.W. and Bailey, S.W., (1988) Polytypism of 1:1 layer silicates Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical society of America 927 10.1515/9781501508998-007 Reviews in Mineralogy, 19 .CrossRefGoogle Scholar
Bell, A.M.T. and Henderson, C.M.B., (1994) Rietveld refinement of the structures of dry-synthesized MFeIIISi2O6 leucites (M=K,Rb, Cs) by synchrotron X-ray powder diffraction Acta Crystallographica C50 1531 1536.Google Scholar
Brigatti, M.F. Galli, E. Medici, L. and Poppi, L., (1997) Crystal structure of aluminian lizardite-2H 2 American Mineralogist 82 931935 10.2138/am-1997-9-1010.Google Scholar
Brunton, G.D. Harris, L.A. and Kopp, O.C., (1972) Crystal structure of rubidium-iron feldspar American Mineralogist 57 1720 1728.Google Scholar
Canillo, E. Mazzi, F. Fang, J.H. Robinson, P.D. and Ohya, Y., (1971) The crystal structure of aenigmatite American Mineralogist 56 427 445.Google Scholar
Clegg, W., (1981) Faster data collection without loss of precision. An extension of the learnt profile method Acta Crystallographica A37 2228 10.1107/S0567739481000053.Google Scholar
Collomb, A. Litsardakis, G. Samaras, D. and Pannetier, J., (1989) Neutron diffraction studies of the crystallographic and magnetic structures of SrZn2/3Mn4/3Fe16O27 Journal of Magnetism and Magnetic Materials 78 219225 10.1016/0304-8853(89)90271-0.Google Scholar
de Boer, V. van Santen, J.H. and Verwey, E.J.W., (1950) The electrostatic contribution to the lattice energy of some ordered spinels Journal of Chemical Physics 18 10321034 10.1063/1.1747852.Google Scholar
Della Giusta, A. Princivalle, F. and Carbonin, S., (1987) Crystal structure and cation distribution in some natural magnetites Mineralogy and Petrology 37 315321 10.1007/BF01161823.Google Scholar
Dollase, W.A. and Ross, C.R. II, (1993) Crystal structure of the body centered tetragonal tectosilicates American Mineralogist 78 627 632.Google Scholar
Donnay, G. Morimoto, N. Takeda, H. and Donnay, J.H.D., (1964) Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica Acta Crystallographica 17 13691373 10.1107/S0365110X64003450.Google Scholar
Dornberger-Schiff, K. and Ďurovič, S., (1975) OD-interpretation of kaolinite-type structures — I: Symmetry of kaolinite packets and their stacking possibilities Clays and Clay Minerals 23 219229 10.1346/CCMN.1975.0230310.Google Scholar
Dornberger-Schiff, K. and Ďurovič, S., (1975) OD-interpretation of kaolinite-type structures — II: The regular polytypes (MDO-polytypes) and their derivation Clays and Clay Minerals 23 231246 10.1346/CCMN.1975.0230311.Google Scholar
Dowty, E., (1991) ATOMS, a computer program for displaying structures Kingsport, Tennessee Shape Software.Google Scholar
Ďurovič, S., (1995) Troubles with cronstedtite-1M Geologica Carpathica — Clays 4 88.Google Scholar
Ďurovič, S., (1997) Cronstedtite-1M and coexistence of 1M and 3T polytypes Ceramics-Silikáty 41 98 104.Google Scholar
Franzini, M., (1969) The A and B mica layers and the crystal structure of sheet silicates Contributions to Mineralogy and Petrology 21 203224 10.1007/BF00371751.Google Scholar
Geiger, C.A. Henry, D.L. Bailey, S.W. and Maj, J.J., (1983) Crystal structure of cronstedtite-2H 2 Clays and Clay Minerals 31 97108 10.1346/CCMN.1983.0310203.Google Scholar
Giusepetti, G. and Tadini, C., (1972) The crystal structure of the 2O brittle mica anandite Tschermaks Mineralogische und Petrographische Mitteilungen 18 169184 10.1007/BF01134206.Google Scholar
Grey, I.E. Hoskins, B.F. and Madsen, I.C., (1990) A structural study of the incorporation of silica into sodium ferrites, Na 1 x [ Fe 1 x 3 + Si x O 2 ] , x = 0 to 0.20 Journal of Solid State Chemistry 85 202219 10.1016/S0022-4596(05)80077-5.Google Scholar
Guggenheim, S. and Eggleton, R.A., (1998) Modulated crystal structures of greenalite and caryopilite: A system with longrange, in-plane structural disorder in the tetrahedra sheet The Canadian Mineralogist 36 163 179.Google Scholar
Guggenheim, S. and Zhan, W., (1998) Effect of temperature on the structures of lizardite-1T and lizardite-2H 1 The Canadian Mineralogist 36 1587 1594.Google Scholar
Hall, S.H. and Bailey, S.W., (1979) Cation ordering pattern in amesite Clays and Clay Minerals 27 241247 10.1346/CCMN.1979.0270401.Google Scholar
Hawthorne, F.C., (1978) The crystal chemistry of the amphiboles. VIII. The crystal structure and site chemistry of fluorriebeckite The Canadian Mineralogist 16 187 194.Google Scholar
Hazen, R.M. Finger, L.W. and Velde, D., (1981) Crystal structure of a silica- and alkali-rich trioctahedral mica American Mineralogist 66 586 591.Google Scholar
Hybler, J., (1997) Determination of crystal structures of minerals affected by twinning Prague, Czech Republic Charles University 138 pp. (in Czech with an English summary).Google Scholar
Hybler, J., (1998) Polytypism of cronstedtite from Chvaletice and Litošice Ceramics-Silikáty 42 130 131.Google Scholar
Hybler, J. Petříček, V. Ďurovič, S. and Smrčok, L., (2000) Refinement of the crystal structure of the cronstedtite-1T Clays and Clay Minerals 48 331338 10.1346/CCMN.2000.0480304.Google Scholar
International Tables for Crystallography, Volume A (1983) D. Reidel Publishing Company, Dordrecht, The Netherlands.Google Scholar
International Tables for X-ray Crystallography, Volume IV (1974) The Kynoch Press, Birmingham, England.Google Scholar
Kato, T., (1986) The crystal structure of yeatmanite Mineralogical Journal (Japan) 13 2 5354 10.2465/minerj.13.53.Google Scholar
Kogure, T. Hybler, J. and Ďurovič, S., (2001) A HRTEM study of cronstedtite: determination of polytypes and layer polarity in trioctahedral 1:1 phyllosilicates Clays and Clay Minerals 49 310317 10.1346/CCMN.2001.0490405.Google Scholar
Konnert, J.A. Appleman, D.E. Clark, J.R. Finger, L.W. Kato, T. and Miura, Y., (1976) Crystal structure and cation distribution of hulsite, a tin-iron borate American Mineralogist 61 116 122.Google Scholar
Ladd, M.F.C. and Palmer, R.A., (1977) Structure Determination by X-ray Crystallography New York Plenum 10.1007/978-1-4615-7930-4 393 pp.Google Scholar
Mellini, M., (1982) The crystal structure of lizardite-1T: hydrogen bonds and polytypism American Mineralogist 67 587 598.Google Scholar
Mellini, M. and Viti, C., (1994) Crystal structure of lizardite-1T from Elba, Italy American Mineralogist 79 1194 1198.Google Scholar
Mellini, M. and Zanazzi, P.F., (1987) Crystal structures of lizardite-1T and lizardite-2H 1 from Coli, Italy American Mineralogist 72 943 948.Google Scholar
Mellini, M. Weiss, Z. Rieder, M. and Drábek, M., (1996) Cs-ferrianite as a possible host of waste cesium European Journal of Mineralogy 8 12651271 10.1127/ejm/8/6/1265.Google Scholar
Mereiter, K., (1978) Die Kristallstruktur des Voltaits, K 2 Fe 5 2 + Fe 3 3 + Al ( SO 4 ) 12 18 ( H 2 O ) Tschermaks Mineralogische und Petrographische Mitteilungen 18 185202 10.1007/BF01134207.Google Scholar
Mikloš, D., (1975) Symmetry and polytypism of trioctahedral kaolin-type minerals Bratislava, Slovakia Institute of Inorganic Chemistry, Slovak Academy of Sciences 144 pp. (in Slovak).Google Scholar
Modaressi, A. Gerardin, R. Malaman, B. and Gleitzer, C., (1984) Structure et proprietes d’un germanate de fer de valence mixte Fe4Ge2O9. Etude succinte de GexFe(3−x)O4 (x < 0.5) Journal of Solid State Chemistry 53 2224 10.1016/0022-4596(84)90224-X.Google Scholar
Palmer, D.C. Dove, M.T. Ibberson, R.M. and Powell, B.M., (1997) Structural behavior, crystal chemistry and phase transitions in substituted leucite: High resolution neutron powder diffraction studies American Mineralogist 82 1629 10.2138/am-1997-1-203.Google Scholar
Petříček, V. and Dušek, M., (2000) The crystallographic computing system JANA2000 Praha, Czech Republic Institute of Physics.Google Scholar
Radoslovich, E.W., (1961) Surface symmetry and cell dimension of layer-lattice silicates Nature, London 191 6768 10.1038/191067a0.Google Scholar
Redhammer, G.J., (1998) Mössbauer spectroscopy and Rietveld refinement of synthetic ferri-Tschermak’s molecule CaFe3+(Fe3+Si)O6 substituted diopside European Journal of Mineralogy 10 439452 10.1127/ejm/10/3/0439.Google Scholar
Renner, B. and Lehmann, G., (1986) Correlation of angular and bond length distortions in TO4 units in crystals Zeitschrift für Kristallographie 175 43 59.Google Scholar
Robinson, K. Gibbs, G.V. and Ribbe, P.H., (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra Science 172 567570 10.1126/science.172.3983.567.Google Scholar
Ross, C.R. Armbruster, T. and Canil, D., (1992) Crystal structure refinement of a spinelloid in the system Fe3O4-Fe2SiO4 American Mineralogist 77 507 511.Google Scholar
Semenova, T.F. Rozhdestvenskaya, I.V. and Frank-Kamenetskii, V.A., (1977) Refinement of the crystal structure of tetraferri phlogopite Kristallografiya 22 11961201 (in Russian).Google Scholar
Smrčok, L. Ďurovič, S. Petříček, V. and Weiss, Z., (1994) Refinement of the crystal structure of cronstedtite-3T Clays and Clay Minerals 42 544551 10.1346/CCMN.1994.0420505.Google Scholar
Steadman, R., (1964) The structure of trioctahedral kaolin-type silicates Acta Crystallographica 17 924927 10.1107/S0365110X64002390.Google Scholar
Steadman, R. and Nuttall, P.M., (1963) Polymorphism in cronstedtite Acta Crystallographica 16 18 10.1107/S0365110X63000013.Google Scholar
Steadman, R. and Nuttall, P.M., (1964) Further polymorphism in cronstedtite Acta Crystallographica 17 404406 10.1107/S0365110X64000913.Google Scholar
Steinfink, H., (1962) Crystal structure of a trioctahedral mica: Phlogopite American Mineralogist 47 886 889.Google Scholar
Tagai, T. and Joswig, W. (1985) Untersuchungen der Kationverteilung im Staurolith durch Neutronenbeugung bei 100 K. Neues Jahbuch für Mineralogie Monatshefte, 97107.Google Scholar
Taylor, H.F.W., (1992) Tobermorite, jennite and cement gel Zeitschrift für Kristallographie 202 4150 10.1524/zkri.1992.202.1-2.41.Google Scholar
Templeton, D.H. and Templeton, L.K. (1978) Program AGNOST C. University of California at Berkeley.Google Scholar
Toraya, H., (1981) Distortion of octahedra and octahedral sheets in 1M micas and the relation to their stability Zeitschrift für Kristallographie 157 173 190.Google Scholar
Wechsler, B.A. Lindsley, D.H. and Prewitt, C.T., (1984) The crystal structure and cation distribution in titanomagnetites (Fe3−xTixO4) American Mineralogist 69 754 770.Google Scholar
Weiss, Z. Rieder, M. Chmielová, M. and Krajíček, J., (1985) Geometry of the octahedral coordination in micas American Mineralogist 70 747 757.Google Scholar
Weiss, Z. Rieder, M. and Chmielová, M., (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates European Journal of Mineralogy 4 665682 10.1127/ejm/4/4/0665.Google Scholar
Wiewióra, A. Rausell-Colom, J.A. and García-Gonzáles, T., (1991) The structure of amesite from Mount Sobotka: A nonstandard polytype American Mineralogist 76 647 652.Google Scholar
Woodland, A.B. and Angel, R.J., (1998) Crystal structure of a new spinelloid with the wadsleyite structure in the system Fe2SiO4 − Fe3O4 and implications for the earth’s mantle American Mineralogist 83 404408 10.2138/am-1998-3-425.Google Scholar
Yakubovich, O.V. Simonov, M.A. Egorov-Tismenko, Y.K. and Belov, N.V., (1977) The crystal structure of a synthetic variety of alluadite Doklady Akademii Nauk SSSR 236 11231126 (in Russian).Google Scholar
Zheng, H. and Bailey, S.W., (1997) Refinement of an amesite-2H 1 polytype from Potmasburg, South Africa Clays and Clay Minerals 45 301310 10.1346/CCMN.1997.0450301.Google Scholar
Zhukhlistov, A.P. and Zvyagin, B.B., (1998) Crystal structure of lizardite-1T from electron diffractometry data Kristallographiya 43 100910014 (in Russian); also in: Crystallography Reports 43, 950–955.Google Scholar