Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T04:51:55.499Z Has data issue: false hasContentIssue false

Relations of Composition to Structure of Dioctahedral 2:1 Clay Minerals

Published online by Cambridge University Press:  01 July 2024

Charles E. Weaver*
Affiliation:
Geophysical Sciences, Georgia Institute of Technology, Atlanta, Georgia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A ternary plot of the tetrahedral R3+ and octahedral R3+ populations for the dioctahedral 2:1 clay minerals shows a broad range of compositional variation within each of the major clay minerals. The clay minerals can be subdivided on the basis of total charge, location of the charge, and the relative amounts of Al and Fe3+ in the octahedral sheet. The division is natural and is controlled by the misfit between the tetrahedral and octahedral sheets and the need for tetrahedral rotation. The compositions of the tetrahedral and octahedral sheets are interdependent. Whereas muscovite has a lower limit of 1·7 Al octahedral occupancy, illite and montmorillonite have a lower limit of 1·3 Al; lower Al values result in the formation of a chain structure.

Résumé

Résumé

Un relevé ternaire des populations tétraédriques R3+ et octaédrique R3+ pour les minéraux argileux dioctaédriques 2:1, montre une gamme étundue de variations dans la composition de chacun des principaux minéraux argileux. Les minéraux argileux peuvent se subdiviser sur la base d’une charge totale, de la localisation de la charge et des quantités relatives de Al et de Fe3+ dans la feuillet octaédrique. La division est naturelle et elle est contrôlée par l’échec entre les feuillets tétraédriques et octaédriques et le besoin pour la rotation tétraédrique. Les compositions des feuillets tétraédriques et octaédriques sont interdépendantes. Cependant, le muscovite a une limite plus faible de contenance de 1·7 A1 octaédrique, l’illite et le montmorillonite ont une limite plus basse de 1·3 Al; des valeurs d’Al plus faibles résultent de la formation d’une structure en chaîne.

Kurzreferat

Kurzreferat

Ein Dreistoffidagramm der tetrahedralen R3+ und oktahedralen R3+ Bestände für die dioktahedralen 2:1 Tonminerale zeigte einen weiten Bereich von Unterschieden in der Zusammensetzung innerhalb jedes der wichtigeren Tonminerale. Eine Unterteilung der Tonminerale ist möglich auf Grund der Gesamtladung, Lage der Ladung und der relativen Menge von Al und Fe3+ in der oktahedralen Schicht. Die Teilung ist eine natürliche Erscheinung und wird durch den Mangel an Anpassung zwischen tetrahedralen und oktahedralen Schichte, sowie durch den Bedarf für tetrahedrale Drehung bedingt. Die Zusammensetzungen der tetrahedralen und oktahedralen Schichten sind voneinander abhängig. Während Muscovit eine untere Grenze von 1,7 Al oktahedraler Besetzung hat, weisen Illit und Montmorillonit eine untere Grenze von 1,3 Al auf; niedrigere Al Werte geben Anlass zur Bildung von Kettenformationen.

Резюме

Резюме

Третичная кривая четырехгранных Р3+ и восьмигранных R3+ плотностей из-дивосьмигранных 2:1 глинистых иинералов указывает на крупное количество изменений по составу в каждом из главных глинистых минералов. Глинистые минералы подразделяют на основании общей нагрузки, местоположения нагрузки и относительного количества А1 и Fe3+ в восьмигранном слое. Раздел естественный и регулируется отсутствием несоответствия между четырехгранными и восьмигранными слоями, а также необходимостью четырехгранного чередования. Составы четырехгранных и восьмигранных слоев взаимосвязанные. В то время, как мусковит имеет более низкий уровень восьмигранной занятости 1,7 Аl, иллит и монтмориллонит имеют более низкий уровень 1,3 А1; более низкие значения А1 влекут за собой возникновение цепной структуры.

Type
Research Article
Copyright
Copyright © 1968, The Clay Minerals Society

References

Bradley, W. F. (1955) Structural irregularities in hydrous magnesium silicates: Clays and Clay Min., Natl. Acad. Sci., Natl. Res. Council Publ. 3, 94102.Google Scholar
Burst, J. F. (1958) Mineral heterogeneity in glauconite pellets, Am. Mineralogist 43, 481497.Google Scholar
Caillère, S. and Hénin, S. (1961) Palygorskite, in The X-ray Identification and Crystal Structures of Clay Minerals; Min. Soc. of London, (Edited by Brown, G.) Chap. 9, pp. 343353.Google Scholar
Foster, M. D. (1951) The importance of exchangeable magnesium and cation exchange capacity in the study of montmorillonite clays: Am. Mineralogist 36, 717730.Google Scholar
Foster, M. D. (1954) The relation between illite, beidellite, and montmorillonite: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 2, 386397.Google Scholar
Grim, R. E. and Kulbicki, G. (1961) Montmorillonite: high temperature reactions and classification: Am. Mineralogist 46, 13291369.Google Scholar
Hallimond, A. F. (1922) On glauconite from the green- sand near Lewes Sussex; The constitution of glauconite, Mineralogist Mag. 19, 330333.Google Scholar
Hendricks, S. V. and Ross, C. S. (1941) Chemical composition and genesis of glauconite and celadonite: Am. Mineralogist 26, 683708.Google Scholar
Kerr, P. F., and others (1950) Analytical data on reference clay materials: Prelim. Rep. No. 7, Reference Clay Min., Am. Petroleum Inst., Res. Prop. 49, Columbia Univ., New York.Google Scholar
Osthaus, V. B. (1955) Interpretation of chemical analyses of montmorillonites: Clays and Clay Techn. 1, 95100 Div. of Mines, California.Google Scholar
Radoslovich, E. W. (1962) The cell dimensions and symmetry of layer-lattice silicates II. Regression relations: Am. Mineralogist 47, 617636.Google Scholar
Radoslovich, E. W. (1963) The cell dimensions and symmetry of layer-lattice silicates IV. Interatomic forces: Am. Mineralogist 48, 7699.Google Scholar
Radoslovich, E. W. and Norrish, K., (1962) The cell dimensions and symmetry of layer-lattice silicates I. Some structural considerations: Am. Mineralogist 47, 599616.Google Scholar
Ross, C. S. and Hendricks, S. B. (1945) Minerals of the montmorillonite group: U.S.G.S. Bull., 205 B.Google Scholar
Sawhney, B. L. and Jackson, M. L. (1958) Soil montmorillonite formulas: Soil Sci. Soc. Am. Proc. 22, 115118.CrossRefGoogle Scholar
Tyler, S. A. and Bailey, S. W. (1961) Secondary glauconite in the Biwabic Iron-Formation of Minnesota: Econ. Geol. 56, 10301044.CrossRefGoogle Scholar
Warshaw, C. M. (1957) The mineralogy of glauconite: Ph.D. Thesis, Pennsylvania State University.Google Scholar
Wise, W. S. and Eugster, H. P. (1964) Celadonite: synthesis, thermal stability and occurrence: Am. Mineralogist 49, 10311083.Google Scholar
Yoder, H. S. and Eugster, H. P. (1955) Synthetic and natural muscovites: Geochim. Cosmochim. Acta 8, 225280.CrossRefGoogle Scholar