Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T08:33:41.941Z Has data issue: false hasContentIssue false

The Release of Aluminum from Aluminosilicate Minerals. I. Kinetics

Published online by Cambridge University Press:  01 July 2024

F. Cabrera*
Affiliation:
Soils and Plant Nutrition Department, Rothamsted Experimental Station, Harpenden, Herts., England AL5 2JQ
O. Talibudeen
Affiliation:
Soils and Plant Nutrition Department, Rothamsted Experimental Station, Harpenden, Herts., England AL5 2JQ
*
*Permanent address: Centro de Edafología y Biología Aplicada del Cuarto (C.S.I.C.), Sevilla, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rates of release of Al by M NH4NO3 (pH 3) from minerals saturated with Al ions at pH 3 suggest that Al ions migrated from the surface layers and the matrix cores of kaolinite, montmorillonite, illite, and biotite, but only from the matrix core of muscovite mica. From the 0.25–0.5 μm kaolinite and montmorillonite, part of the ‘surface’ Al is released ‘instantaneously’ and the rest by first order kinetics, but the coarse 1.5–2.5 μm kaolinite has only the former component. From illite and biotite, ‘surface’ Al is released by ‘bulk diffusion’ kinetics suggesting the existence of disturbed peripheral layers of finite thickness. The diffusion coefficients, Dm, for the matrix core follow the trend: mica ≃ biotite > illite > montmorillonite > kaolinite.

Based on models proposed in previous work, the ionic composition of the ‘surface’ Al is calculated. This shows that (1) this composition varies according to the mineral from 3 to 100% Al3+, the remainder being in the hydrolyzed form, and (2) the apparent hydrolysis constants are different for each mineral and significantly different from those of Al ions in solution.

Резюме

Резюме

Скорости высвобождения А1 с помощью M NH4NO3 (рН 3) из минералов, насыщенных ионами А1 при рН=3 позволяет предположить, что ионы А1 мигрировали из поверхностных слоев и изнутри образцов каолинита, монтмориллонита,ил-лита и биотита, но только изнутри образцов слюды мусковита. Из 0.25–0.5 дм каолинита и монтмориллонита, часть “поверхностного” Аl высвобождается “моментально” и остальной-согласно кинетике первого порядка, но грубозернистый 1,5–2,5 μм каолинит имеет только первый компонент. Из иллита и биотита,"поверхностный" Al высвобождается согласно "объемной диффузионной" кинетике, предполагающей существование наружных периферийных слоев ограниченной мощности. Диффузионные коэффициенты, Dm,для внутренних частей образцов следуют тенденции: слюда ≃биотит>иллит>монтмориллонит>каолинит.

На основе моделей, предложенных в предыдущей работе, был вычислен ионный состав “поверхностного” Al. Эти вычисления показывают Что 1/ этот состав изменяется в соответствии с минералом от 3 до 100% Аl3+, остальная часть находится в гидролизной форме и 2/ удельные гидролизные постоянные различны для каждого минерала и значительно отличаются от этих же параметров для ионов Аl в растворе.

Kurzreferat

Kurzreferat

Die Geschwindigkeiten, mit denen Al durch 1 molare Ammoniumnitratlösung, bei pH 3 aus mit Al gesätigten Mineralien gelöst wird, deutet darauf hin, daß Al Ionen von den Oberflächen und den Gesteinsinnern von Kaolinit, Montmorillonit, Illit und Biotit,aber nur vom Innern des Muskowit-Glimmer, freigesetzt werden. Von den 0,25–0,5 ym Kaoliniten und Montmorillo-niten wird ein Teil des Oberfächen-Al unverzüglich herausgelöst und der Rest folgt Kinetik erster Ordnung; grobes, 1,5–2,5 um Kaolinit jedoch besitzt nur die erstere Komponente. Von Illit und Biotit wird Oberflächen-Al via Massendiffusionskinetik freigesetzt, was auf die Existenz einer veränderten peripheren Schicht mit begrenzter Dicke hindeutet. Die Diffusionskoeffizienten, Dm, für das Gesteinsinnere haben die folgende Tendenz: Glimmer ≃ Biotit > Illit > Montmorillonit > Kaolinit. Auf Basis von vorgeschlagenen Modellen von früherer Arbeit, wird die ionische Zusammenstellung des Oberflächen Al berechnet. Damit wird gezeigt, (1) die Zusammensetzung variiert mit dem Mineral von 3 bis 100 % Al(III), mit dem Rest in hydrolisierter Form; und (2) die scheinbaren Hydrolysenkonstanten sind unterschiedlich für jedes Mineral und sehr anders als die Konstanten für Al-Ionen in Lösung.

Résumé

Résumé

Les vitesses de libération de l'Al par M NH4NO3 (pH 3) d'ions saturés d'Al à un pH de 3 suggère que les ions d'Al ont émigré des couches de surface et du noyau de la matrice de kaolinite, d'illite et de biotite, mais seulement du noyau de la matrice de mica muscovite. De 0.25–0.5 ym de kaolinite et de montmorillonite,une partie de l'Al “de surface” est libérée “instantanément” et le reste par cinétique de premier ordre; mais la kaolinite grossière de 1.5–2.5ym est entièrement libérée “instantanément”. L'Al de surface est libérée par “diffusion en masse” cinétique de l'illite et de la biotite, suggérant l'existence de couches déformées d’épaisseur finie. Les coefficients de diffusion, Dm, suivent la tendance suivante pour le noyau de la matrice: mica ≃ biotite>illite>montmorillonite>kaolinite.

En se basant sur des modèles proposés dans une étude précédente, la composition ionique de l'Al de “surface” est calculée. Ceci montre que (1) cette composition varie d'après le minéral de 3 à 100% d'Al, le restant étant dans une forme hydrolysée et (2) les constantes d'hydrolyse sont différentes pour chaque minéral et diffèrent d'une manière significative de celles d'ions d'Al en solution.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Aveston, J. (1965) Hydrolysis of aluminium ion: Ultracentrifugation and acidity measurement: J. Chem. Soc. 44384443.CrossRefGoogle Scholar
Bache, B. W. (1970) Barium isotope method for measuring cation-exchange capacity of soils and clays: J. Sci. Food. Agric. 21, 169171.CrossRefGoogle Scholar
Bache, B. W. (1974) Soluble aluminium and calcium-aluminium exchange in relation to the pH of dilute calcium chloride suspensions of acid soils: J. Soil Sci. 25, 320332.CrossRefGoogle Scholar
Bache, B. W. and Sharp, G. S. (1976a) Characterisation of mobile aluminium in acid soils: Geoderma 15, 91101.CrossRefGoogle Scholar
Bache, B. W. and Sharp, G. S. (1976b) Soluble polymeric hydroxyaluminium ions in acid soils: J. Soil Sci. 27, 167174.CrossRefGoogle Scholar
Brosset, C. (1952) On the reactions of the aluminium ion with water: Acta Chem. Scand. 6, 910940.CrossRefGoogle Scholar
Brosset, C., Biedermann, G. and Sillén, L. G. (1954) Studies of the hydrolysis of metal ions. XI. The aluminium ion, Al3+: Acta Chem. Scand. 8, 19171926.CrossRefGoogle Scholar
Brown, G. and Newman, A. C. D. (1973) The reactions of soluble aluminium with montmorillonite: J. Soil Sci. 24, 337354.CrossRefGoogle Scholar
Cabrera, F. and Talibudeen, O. (1977) Effect of soil pH and organic matter on labile aluminium in soils under permanent grass: J. Soil Sci. 28, 259270.CrossRefGoogle Scholar
Chakravarti, S. N. and Talibudeen, O. (1961) Phosphate interaction with clay minerals: Soil Sci. 92, 232242.CrossRefGoogle Scholar
Coulter, B. S. (1969) The chemistry of hydrogen and aluminium ions in soils, clay minerals and resins: Soils Fert. 32, 215223.Google Scholar
Crank, J. (1956) The Mathematics of Diffusion: Oxford University Press, Oxford.Google Scholar
Dalai, R. C. (1975) Hydrolysis products of solution and exchangeable aluminium in acidic soils: Soil Sci. 119, 127131.CrossRefGoogle Scholar
Jackson, M. L., Tyler, S. A., Willis, A. L., Bourbeau, G. A. and Pennington, R. P. (1948) Weathering sequence of clay-size minerals in soils and sediments. I. Fundamental generalizations: J. Phys. Colloid. Chem. 52, 12371260.CrossRefGoogle Scholar
Jackson, M. L., Hseung, Y., Corey, R. B., Evans, E. J. and Vanden Heuvel, R. C. (1952) Weathering sequence of clay-size minerals in soils and sediments. II. Chemical weathering of layer silicates: Soil Sci. Soc. Am. Proc. 16, 36.CrossRefGoogle Scholar
Jayman, T. C. Z. and Sivasubramaniam, S. (1974) The use of ascorbic acid to eliminate interference from iron in the aluminon method for determining aluminium in plant and soil extracts: Analyst London 99, 296301.CrossRefGoogle Scholar
Lim, T. S. and Talibudeen, O. (1975) The behaviour of exchangeable aluminium in acid soils: Rothamsted Exp. Stn. Rep. Part 1, p. 87.Google Scholar
Lin, C. and Coleman, N. T. (1960) The measurement of exchangeable aluminium in soils and clays: Soil Sci. Soc. Am. Proc. 24, 444447.CrossRefGoogle Scholar
Low, P. F. (1955) The role of aluminum in the titration of bentonite: Soil Sci. Soc. Am. Proc. 19, 135139.CrossRefGoogle Scholar
Prakash, J. B. S. and Bhasker, T. D. (1974) Exchangeable aluminium and phosphorus sorption of some acid soils of Mysore State. Soil Sci. 118, 243246.CrossRefGoogle Scholar
Pyman, M. A. F., Posner, A. M. and Talibudeen, O. (1976) Hydrolysed aluminium ions on montomorillonite: Rothamsted Exp. Stn. Rep. Part 1, pp. 9495.Google Scholar
Rawson, R. A. G. (1969) A rapid method for determining the surface area of aluminosilicates from the adsorption dynamics of ethylene glycol vapour: J. Soil Sci. 20, 325335.CrossRefGoogle Scholar
Richburg, J. S. and Adams, F. (1970) Solubility and hydrolysis of aluminium in soil solutions and saturated-paste extracts. Soil Sci. Soc. Am. Proc. 34, 728734.CrossRefGoogle Scholar
Sivasubramaniam, S. and Talibudeen, O. (1972) K-Al exchange in acid soils. I. Kinetics: J. Soil Sci. 23, 163176.CrossRefGoogle Scholar
Skeen, J. B. and Sumner, M. E. (1967) Exchangeable aluminium. Part I. The efficiency of various electrolytes for extracting aluminium from acid soils: S. Afr. J. Agric. Sci. 10, 310.Google Scholar
Smith, B. H. and Emerson, W. W. (1976) Exchangeable aluminium on kaolinite: Aust. J. Soil Res. 14, 4353.CrossRefGoogle Scholar
Stol, R. J., Van Helden, A. K. and de Bruyn, P. L. (1976) Hydrolysis-precipitation studies of aluminium (Ill) solutions. 2. A kinetic study and model: J. Colloid Interface Sci. 57, 115131.CrossRefGoogle Scholar
Talibudeen, O. and Weir, A. H. (1972) Potassium reserves in a ‘Harwell’ series soil: J. Soil Sci. 23, 456474.CrossRefGoogle Scholar