Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T09:51:17.712Z Has data issue: false hasContentIssue false

Serpentine-Smectite Interstratified Minerals from Lower Silesia (SW Poland)

Published online by Cambridge University Press:  01 January 2024

Boris A. Sakharov
Affiliation:
Geological Institute, Russian Academy of Sciences, Pyzhevsky per. 7, 109017 Moscow, Russia
Elżbieta Dubińska*
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
Paweł Bylina
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland
Jan A. Kozubowski
Affiliation:
Department of Material Engineering, Warsaw Technical University, ul. Narbutta 85, 02-524 Warsaw, Poland
Grzegorz Kaproń
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
Małgorzata Frontczak-Baniewicz
Affiliation:
Medical Research Center, Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland
*
*E-mail address of corresponding author: dubinska@uw.edu.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interstratified serpentine-smectite was found in the fine-grained fraction of altered metasomatic contact biotite-schists developed between serpentinite and granite-type rocks (Lower Silesia ophiolite sequence, Poland). Ni-rich serpentine-smectite is R0-interstratified lizardite (0.80)-stevensite (0.15)-vermiculite-like (0.05), with a coherent scattering domain (csd) of 5 layers (mean value). The Mg-rich variety of serpentine-smectite is R1 lizardite (0.80)-stevensite (0.20) with a csd size of 7 layers (mean value). A transmission electron microscope study revealed complex layer relationships, with zones composed of various serpentine-smectite packets having lizardite/smectite ratios of 3:1, 2:1, 1:1, 4:1 and scarce serpentine segregations. In both cases, the serpentine-smectites appear to be late products of alteration of the parent biotite-schist.

Experimental and calculated positions and intensities of reflections of the ethylene glycol-saturated, heated (250°C, thermal stage), and air-dried samples are in good agreement. Calculated X-ray diffraction patterns for interstratified glycolated and anhydrous serpentine-smectite are included in the Appendix.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Amouric, M. and Olives, J., (1998) Transformation mechanisms and interstratification in conversion of smectite to kaolinite: An HRTEM study Clays and Clay Minerals 46 521527 10.1346/CCMN.1998.0460505.CrossRefGoogle Scholar
Amouric, M. Parron, C. Casalini, L. and Giresse, P., (1995) A (1:1) 7-Å phase and its transformations in recent sediments: an HRTEM and AEM study Clays and Clay Minerals 43 446454 10.1346/CCMN.1995.0430408.CrossRefGoogle Scholar
Aurousseau, P. Curmi, P. Bouille, S. and Charpentier, S., (1983) Les vermiculites hydroxy-alumineux du Massif Armoricain (France). Approches mineralogique, microanalitique et thermodynamique Geoderma 31 1740 10.1016/0016-7061(83)90081-2.CrossRefGoogle Scholar
Bailey, S.W. Banfield, J.F. and Barker, W.W., (1995) Dozyite, a 1:1 regular interstratification of serpentine and chlorite American Mineralogist 80 6577 10.2138/am-1995-1-207.CrossRefGoogle Scholar
Banfield, J.F. and Bailey, S.W., (1996) Formation of regularly interstratified serpentine-chlorite minerals by tetrahedral inversion in long-period serpentine polytypes American Mineralogist 81 7991 10.2138/am-1996-1-211.CrossRefGoogle Scholar
Banfield, J.F. Bailey, S.W. and Barker, W.W., (1994) Polysomatism, polytypism, defect microstructures, and reaction mechanisms in regularly and randomly interstratified serpentine and chlorite Contributions to Mineralogy and Petrology 117 137150 10.1007/BF00286838.CrossRefGoogle Scholar
Bons, A.-J. and Schryvers, D., (1989) High-resolution electron microscopy of stacking irregularities in chlorites from the central Pyrenees American Mineralogist 74 11131123.Google Scholar
Brindley, G.W. and Hang, P.T., (1973) The nature of garnierites — I. Structures, chemical compositions and color characteristics Clays and Clay Minerals 21 2740 10.1346/CCMN.1973.0210106.CrossRefGoogle Scholar
Bylina, P., (1996) Crystallochemistry and genesis of layer silicates from the contact zone between pegmatite and serpentinite from Wiry (Lower Silesia) Warsaw, Poland Institute of Geological Sciences, Polish Academy of Sciences PhD thesis.Google Scholar
Carnicelli, S. Mirabella, A. Cecchini, G. and Sanes, G., (1997) Weathering of chlorite to a low-charge expandable mineral in a Spodosol on the Apennine mountains, Italy Clays and Clay Minerals 45 2841 10.1346/CCMN.1997.0450104.CrossRefGoogle Scholar
de Chetelat, E., (1947) La genèse et l’évolution des gisements de nickel de la Nouvelle-Calédonie Bulletin de la Societé Géologique de la France 17 105160.CrossRefGoogle Scholar
Colin, F. Noack, Y. Trescazes, J.-J. and Nahon, D., (1985) L’altération lateritiques debutante des pyroxenites de Jacuba, Niquelandia, Brésil Clay Minerals 20 93113 10.1180/claymin.1985.020.1.08.CrossRefGoogle Scholar
Colin, F. Nahon, D. Trescazes, J.-J. and Melfi, A.J., (1990) Lateritic weathering of pyroxenites at Niquelandia, Goias, Brasil: The supergene behaviour of nickel Economic Geology 85 10101023 10.2113/gsecongeo.85.5.1010.CrossRefGoogle Scholar
Dalla Torre, M. Livi, K.J.T. and Frey, M., (1996) Chlorite textures and compositions from high-pressure/low-temperature metashales and metagraywackes, Franciscan Complex, Diablo Range, California, USA European Journal of Mineralogy 8 825846 10.1127/ejm/8/4/0825.CrossRefGoogle Scholar
Drits, V.A. and Sakharov, B.A., (1976) X-ray structural analysis of mixed-layer minerals Transactions of the Academy of Sciences U.S.S.R 295 1252.Google Scholar
Drits, V.A. and Tchoubar, C., (1990) X-ray Diffraction by Lamellar Structures. Theory and Application to Microdivided Silicates and Carbons 371 pp.CrossRefGoogle Scholar
Drits, V.A. Środoń, J. and Eberl, D.D., (1997) XRD measurement of mean crystallite thickness of illite and illite-smectite: Reappraisal of the Kübler index and the Scherrer equation Clays and Clay Minerals 45 461475 10.1346/CCMN.1997.0450315.CrossRefGoogle Scholar
Dubińska, E., (1982) Nickel-bearing minerals with chlorite-vermiculite intermediate structure from Szklary near Ząbkowice Śląskie (Lower Silesia) Archiwum Mineralogiczne 38 2751.Google Scholar
Dubińska, E., (1984) Interstratified minerals with chlorite layers from Szklary near Ząbkowice Śląskie (Lower Silesia) Archiwum Mineralogiczne 39 523.Google Scholar
Dubińska, E. Bylina, P. and Sakharov, B.A., (1995) Corrensite from Nasławice (Lower Silesia, Poland): Some problems of mineral identification and origin Clays and Clay Minerals 43 630636 10.1346/CCMN.1995.0430513.CrossRefGoogle Scholar
Dubińska, E. Jelitto, J. and Kozłowski, A., (1995) Origin and evolution of granite-serpentinite reaction zones at Wiry, Lower Silesia Acta Geologica Polonica 45 4182.Google Scholar
Dubińska, E. Sakharov, B.A. Kaproń, G. Bylina, P. and Kozubowski, J.A., (2000) Layer silicates from Szklary (Lower Silesia): starting from ocean floor metamorphism to continental chemical weathering Geologia Sudetica 33 85105.Google Scholar
Ezzaïm, A. Turpault, M.-P. and Ranger, J., (1999) Quantification of weathering processes in an acid brown soil developed from tuff (Beaujolais, France). Part II. Soil formation Geoderma 87 155177 10.1016/S0016-7061(98)00061-5.CrossRefGoogle Scholar
Golightly, J.P., (1981) Nickeliferous laterite deposits Economic Geology 710735.CrossRefGoogle Scholar
Gorshkov, A.I. Zinchuk, N.N. Kotel’nikov, D.D. Shlykov, V.G. Zhukhlistov, A.P. Mokhov, A.V. and Sivtsov, A.V., (2002) A new ordered mixed-layer lizardite-saponite mineral from South African kimberlites Doklady Earth Sciences 382 8690.Google Scholar
Jelitto, J. Dubińska, E. Wiewióra, A. and Bylina, P., (1993) Layer silicates from serpentinite-pegmatite contact (Wiry, Lower Silesia, Poland) Clays and Clay Minerals 41 693701 10.1346/CCMN.1993.0410607.CrossRefGoogle Scholar
Jiang, W.-T. Peacor, D.R. and Slack, J.F., (1992) Microstructures, mixed-layering and polymorphism of chlorite and berthierine in the Kidd Creek massive sulphide deposit, Ontario Clays and Clay Minerals 40 501514 10.1346/CCMN.1992.0400503.CrossRefGoogle Scholar
Ma, C. and Eggleton, R., (1999) Surface layer types of kaolinite: a high-resolution transmission electron microscope study Clays and Clay Minerals 47 181191 10.1346/CCMN.1999.0470208.Google Scholar
Makumbi, L. and Herbillon, A.J., (1972) Vermiculisation expérimentale d’une chlorite Bulletin du Groupe français des Argiles 24 153164 10.3406/argil.1972.1167.CrossRefGoogle Scholar
Mata, M.O. Giorgetti, G. Árkai, P. and Peacor, D.R., (2001) Comparison of evolution of trioctahedral chlorite/berthierine/smectite in coeval metabasites and metapelites from diagenetic to epizonal grades Clays and Clay Minerals 49 318332 10.1346/CCMN.2001.0490406.CrossRefGoogle Scholar
Mering, J., (1949) X-ray diffraction in disordered layer structures Acta Crystallographica 2 371377 10.1107/S0365110X49000977.Google Scholar
Moore, D.M. and Reynolds, R.C. Jr., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals 2nd Oxford-New York Oxford University Press 378 pp.Google Scholar
Nagase, T. Ebina, T. Torii, K. Iwasaki, T. Hayashi, H. Onodera, Y. and Chatterjee, M., (2000) TEM observations of interstratified Ni-serpentine/smectite compounds Chemistry Letters 4 344345 10.1246/cl.2000.344.CrossRefGoogle Scholar
Nahon, D. Paquet, H. and Delvigne, J., (1982) Lateritic weathering of ultramafic rocks and the concentration of nickel in the western Ivory Coast Economic Geology 77 11591175 10.2113/gsecongeo.77.5.1159.CrossRefGoogle Scholar
Ostrowicki, B., (1965) Mineraly niklu strefy wietrzenia serpentynitów w Szklarach (Dolny śląsk) Prace Mineralogiczne PAN 1 192.Google Scholar
Reynolds, R.C., (1986) The Lorentz-polarization factor and preferred orientation in oriented clay aggregates Clays and Clay Minerals 34 359367 10.1346/CCMN.1986.0340402.CrossRefGoogle Scholar
Rich, C.I., (1960) Aluminum in interlayers of vermiculite Soil Science Society of America Proceedings 24 2632 10.2136/sssaj1960.03615995002400010016x.CrossRefGoogle Scholar
Righi, D. Terrible, F. and Petit, S., (1999) Pedogenic formation of kaolinite-smectite mixed layers in a soil toposequence developed from basaltic parent material in Sardinia (Italy) Clays and Clay Minerals 47 505514 10.1346/CCMN.1999.0470413.CrossRefGoogle Scholar
Sakharov, B.A. and Drits, V.A., (1973) Mixed-layer kaolinite-montmorillonite. A comparison of observed and calculated diffraction patterns Clays and Clay Minerals 21 1517 10.1346/CCMN.1973.0210104.CrossRefGoogle Scholar
Sakharov, B.A. Dubińska, E. Bylina, P. and Kaproń, G., (2001) Unusual X-ray characteristics of vermiculite from Wiry, Lower Silesia, Poland Clays and Clay Minerals 49 197203 10.1346/CCMN.2001.0490302.CrossRefGoogle Scholar
Schmidt, D. and Livi, K.J.T., (1999) HRTEM and SAED investigations of polytypism, stacking disorder, crystal growth, and vacancies in chlorites from subgreenschist facies outcrops American Mineralogist 84 160170 10.2138/am-1999-1-218.CrossRefGoogle Scholar
Schmidt, D. Livi, K.J.T. and Frey, M., (1999) Reaction progress in chloritic material: an electron microbeam study of the Taveyanne greywacke, Switzerland Journal of Metamorphic Geology 17 229241 10.1046/j.1525-1314.1999.00195.x.CrossRefGoogle Scholar
Slack, J.F. Jiang, W.-T. Peacor, D.R. and Okita, P.P., (1992) Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario The Canadian Mineralogist 30 11271142.Google Scholar
Sudo, T. and Hayashi, H., (1956) A randomly interstratified kaolin-montmorillonite in acid clay deposits in Japan Nature 178 11151116 10.1038/1781115b0.CrossRefGoogle Scholar
Torii, K. Onodera, Y. Hayashi, H. Nagase, T. and Iwasaki, T., (1998) Hydrothermal synthesis of interstratified lizardite/saponite Journal of American Ceramic Society 81 447449 10.1111/j.1151-2916.1998.tb02358.x.CrossRefGoogle Scholar
Walker, G.W. and Gieseking, J.E., (1975) Vermiculites Soil Components, Volume 2: Inorganic Components New York-Berlin-Heidelberg Springer 155189 10.1007/978-3-642-65917-1_6.CrossRefGoogle Scholar
Wicks, F.J. and Whittaker, E.J.W., (1975) A reappraisal of the structures of the serpentine minerals The Canadian Mineralogist 13 227243.Google Scholar
Wiewióra, A., (1971) A mixed layer mineral kaolinite-smectite from Lower Silesia, Poland Clays and Clay Minerals 19 415416 10.1346/CCMN.1971.0190610.CrossRefGoogle Scholar
Wiewióra, A., (1978) Ni-containing mixed-layer silicates from Szklary, Lower Silesia, Poland Bulletin BRGM 3 247261.Google Scholar
Wiewióra, A. and Dubińska, E., (1987) Origin of minerals with intermediate chlorite-vermiculite structure Chemical Geology 60 185197 10.1016/0009-2541(87)90124-0.CrossRefGoogle Scholar
Wiewióra, A. Dubińska, E. and Iwasińska, I., (1982) Mixed-layering in Ni-containing talc-like minerals from Szklary, Lower Silesia, Poland Proceedings of the International Clay Conference 1981 Amsterdam Elsevier 111125.Google Scholar
Xu, H. and Veblen, D.R., (1996) Interstratification and other reaction microstructures in the chlorite-berthierine series Contributions to Mineralogy and Petrology 124 291301 10.1007/s004100050192.CrossRefGoogle Scholar