Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T02:00:56.306Z Has data issue: false hasContentIssue false

Si-Associated Goethite in Hydrothermal Sediments of the Atlantis II and Thetis Deeps, Red Sea

Published online by Cambridge University Press:  01 January 2024

Nurit Taitel-Goldman*
Affiliation:
The Open University of Israel, P.O. Box 39328 Tel Aviv, Israel The Seagram Center for Soil and Water sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
Christian Bender Koch
Affiliation:
Chemistry Department, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871, Frederiksberg C., Denmark
Arieh Singer
Affiliation:
The Seagram Center for Soil and Water sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
*
*E-mail address of corresponding author: nuritg@openu.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The properties of Si-associated goethite from sediments in the Atlantis II and Thetis Deeps in the Red Sea have been investigated in order to determine the effect of Si on the mineral. Two types of morphologies dominate in most samples: multi-domain crystallites, probably due to elevated Na concentration in the initial brine from which the mineral had crystallized, and mono-domain, acicular crystals. Goethite crystals with elevated Si/Fe elemental ratios are usually smaller and poorly crystalline, exhibiting numerous crystal defects, whereas larger crystals with higher crystallinity have lower Si/Fe elemental ratios. The higher Si/Fe ratios in Atlantis II Deep goethites and the lower ratio in Thetis Deep goethites probably reflect the levels of Si concentration in the hydrothermal fluids from which goethite precipitated. At relatively low Si/Fe ratios, the major effect of Si is to retard growth of the crystallites, but only a small number of defects are formed. At high Si/Fe ratios the defect concentration affects the properties of the crystals, as observed with Mössbauer spectroscopy. The Si association with goethite affects crystallinity and crystal size as indicated by X-ray diffraction, infrared spectroscopy and high-resolution transmission electron microscopy.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Anschutz, P. and Blanc, G., (1995) Geochemical dynamics of the Atlantis II Deep, Red Sea: Silica behavior Marine Geology 128 2536 10.1016/0025-3227(95)00085-D.CrossRefGoogle Scholar
Bäcker, V.H. and Richter, H., (1973) Die rezente hydrothermal-sedimentäre Lagerstätte Atlantis II Tief im Roten Meer Geologische Rundschau Bd62 697737 10.1007/BF01820957.CrossRefGoogle Scholar
Bischoff, J.L., Degens, E.T. and Ross, D.A., (1969) Red Sea geothermal brine deposits: Their mineralogy, chemistry and genesis Hot Brines and recent Heavy Metal Deposits in the Red Sea Heidelberg, New York Springer-Verlag Berlin 368401 10.1007/978-3-662-28603-6_37.CrossRefGoogle Scholar
Brewer, P.G. Spencer, D.W., Degens, E.T. and Ross, D.A., (1969) A note on the chemical composition of the Red Sea brines Hot Brines and Recent Heavy Metal Deposits in the Red Sea Heidelberg, New York Springer-Verlag Berlin 174179 10.1007/978-3-662-28603-6_19.CrossRefGoogle Scholar
Butuzova, G.Y.u. Dritz, V.A. Morozov, A.A. and Gorschkov, A.I., (1990) Processes of formation of iron-manganese oxyhydroxides in Atlantis II and Thetis Deeps in the Red Sea Special Publications of the International Association of Sedimentology 11 5772.Google Scholar
Cambier, P., (1986) Infrared study of goethites of varying crystallinity and particle size: I: Interpretation of OH and lattice vibration frequencies Clay Minerals 21 191200 10.1180/claymin.1986.021.2.08.CrossRefGoogle Scholar
Cambier, P., (1986) Infrared study of goethites of varying crystallinity and particle size: II: Crystallographic and morphological changes in series of synthetic goethites Clay Minerals 21 201210 10.1180/claymin.1986.021.2.09.CrossRefGoogle Scholar
Cole, T.G., (1988) The nature and origin of smectite in the Atlantis II Deep, Red Sea The Canadian Mineralogist 26 755763.Google Scholar
Cornell, R.M. and Giovanoli, R., (1986) Factors that govern the formation of multi-domainic goethites Clays and Clay Minerals 34 557564 10.1346/CCMN.1986.0340509.CrossRefGoogle Scholar
Cornell, R.M. and Giovanoli, R. (1987) The influence of silicate species on the morphology of goethite (α-FeOOH) grown from ferrihydrite (5Fe2O3·9H2O). Journal of the Chemical Society, Chemical Communications, 413414.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., (1996) The Iron Oxides, Structure, Properties, Reactions, Occurrence and Uses Germany VCH Verlagsgesellschaft mbH Weinheim 573 pp.Google Scholar
Cornell, R.M. Giovanoli, R. and Schindler, P.W., (1987) Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media Clays and Clay Minerals 35 121–28 10.1346/CCMN.1987.0350204.Google Scholar
Danielsson, L.G. Dyrssen, D. and Graneli, A., (1980) Chemical investigation of Atlantis II and Discovery brines in the Red Sea Geochimica et Cosmochimica Acta 44 20512065 10.1016/0016-7037(80)90203-3.CrossRefGoogle Scholar
Glasauer, S.M., (1995) Silicate Associated with Fe(hydr)oxides Germany Dissertation, Technische Universität Munchen 134 pp.Google Scholar
Glasauer, S. Friedl, J. and Schwertmann, U., (1999) Properties of goethites prepared under acidic and basic conditions in the presence of silicate Journal of Colloid and Interface Sciences 216 106115 10.1006/jcis.1999.6285.CrossRefGoogle ScholarPubMed
Hartmann, M., (1985) Atlantis-II Deep brine system. Chemical processes between hydrothermal brine and Red Sea deep water Marine Geology 64 157177 10.1016/0025-3227(85)90166-5.CrossRefGoogle Scholar
McKeague, J.A. and Day, J.H., (1966) Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils Canadian Journal of Soil Science 46 322.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L. (1960) Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Pp. 317327 in: Proceedings of the 7th National Conference of the Clay Minerals Society, Washington, D.C., 1958 (Swineford, A., editor). Pergamon Press, New York.Google Scholar
Moenke, H.H. and Farmer, V.C., (1974) Silica, the three dimensional silicates, borosilicates, and beryllium silicates The Infrared Spectra of Minerals London Mineralogical Society 365382 10.1180/mono-4.16.CrossRefGoogle Scholar
Mørup, S. Madsen, M.B. Franck, J. Villadsen, J. and Koch, C.J.W., (1983) A new interpretation of Mössbauer spectra of microcrystalline goethite: “super-ferromagnetic” or “super-spin glass” behavior? Journal of Magnetism and Magnetic Materials 40 63174 10.1016/0304-8853(83)90024-0.CrossRefGoogle Scholar
Quin, T.G. Long, G.J. Benson, C.G. Mann, S. and Williams, R.J.P., (1988) Influence of silicon and phosphorus on structural and magnetic properties of synthetic goethite and related oxides Clays and Clay Minerals 36 165175 10.1346/CCMN.1988.0360211.CrossRefGoogle Scholar
Scholten, J.C. Stoffers, P. Walter, P. and Plunger, W., (1991) Evidence for episodic hydrothermal activity in the Red Sea, from the composition and formation of hydrothermal sediments, Thetis Deep Tectonophysics 190 109117 10.1016/0040-1951(91)90357-X.CrossRefGoogle Scholar
Schwertmann, U., (1959) Die fraktionierte Extraktion der freien Eiseoxyde in Boden, ihre mineralogischen Formen und ihre Entstehungsweisen Zeitschrift für Pflanzenernährung Düngung und Bodenkunde 84 194204 10.1002/jpln.19590840131.CrossRefGoogle Scholar
Schwertmann, U., (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Zeitschrift für Pflanzenernährung Düngung und Bodenkunde 105 194202 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Schwertmann, U. Cambier, P. and Murad, E., (1985) Properties of goethites of varying crystallinity Clays and Clay Minerals 33 369375 10.1346/CCMN.1985.0330501.CrossRefGoogle Scholar
Shanks, W.C. III and Bischoff, J.L., (1980) Geochemistry, sulfur isotope composition, and accumulation rates of Red Sea geothermal deposits Economic Geology and the Bulletin of the Society of Economic Geologists 75 445459 10.2113/gsecongeo.75.3.445.CrossRefGoogle Scholar
Taitel-Goldman, N. and Singer, A., (2001) High resolution transmission electron microscopy study of newly formed sediments in the Atlantis II Deep, Red Sea Clays and Clay Minerals 49 174182 10.1346/CCMN.2001.0490207.CrossRefGoogle Scholar
Taitel-Goldman, N. and Singer, A., (2002) Metastable Si-Fe phases in hydrothermal sediments of Atlantis II Deep, Red Sea Clay Minerals 37 221234 10.1180/0009855023720029.CrossRefGoogle Scholar
Taitel-Goldman, N. and Singer, A., (2002) Synthesis of clay-sized iron oxides under marine hydrothermal conditions Clay Minerals 37 719731 10.1180/0009855023740073.CrossRefGoogle Scholar
Taitel-Goldman, N. Singer, A. Stoffers, P., Kodama, H. Mermut, A.R. and Torrance, J.K., (1999) A new short rang e ordered, Fe-Si phase in the Atlantis II Deep, Red Sea hydrothermal sediments Clays for our Future Ottawa, Canada ICC97 Organizing Committee 697705.Google Scholar
Taitel-Goldman, N. Bender Koch, C. and Singer, A., (2002) Lepidocrocite in hydrothermal sediments of the Atlantis II and Thetis Deeps, Red Sea Clays and Clay Minerals 50 186197 10.1346/000986002760832784.CrossRefGoogle Scholar