Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T07:19:10.022Z Has data issue: false hasContentIssue false

Site Occupancies by Iron in Nontronites

Published online by Cambridge University Press:  01 January 2024

W. P. Gates*
Affiliation:
CSIRO Land and Water, PMB No 2, Glen Osmond, SA 5064 Australia
P. G. Slade
Affiliation:
CSIRO Land and Water, PMB No 2, Glen Osmond, SA 5064 Australia
A. Manceau
Affiliation:
Environmental Geochemistry Group, LGIT-IRIGM, University Joseph Fourier and CNRS, BP 53, 38041 Grenoble Cedex 9, France
B. Lanson
Affiliation:
Environmental Geochemistry Group, LGIT-IRIGM, University Joseph Fourier and CNRS, BP 53, 38041 Grenoble Cedex 9, France
*
*E-mail address of corresponding author: will.gates@adl.clw.csiro.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Twelve nontronites and two ferruginous smectites have been characterized with respect to Fe3+ occupancy of tetrahedral sites. The techniques used were near infrared, Fe-K X-ray absorption near-edge and X-ray absorption fine-structure spectroscopies, along with two X-ray diffraction techniques. The results show that calculations of the structural formulae of many nontronites should be adjusted to include Fe3+ in tetrahedral sites. The nontronite from Spokane County, Washington, (∼44% Fe2O3) is essentially an end-member with its non-siliceous tetrahedral sites occupied by Fe3+. Samples with chemical compositions similar to Garfield nontronite (∼36.5% Fe2O3) may have small amounts (<5% of total Fe3+) of tetrahedral Fe3+. Tetrahedral Fe3+ is unlikely to be present in samples containing less than ∼34% Fe2O3.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Besson, G. Bookin, A.S. Dainyak, L.G. Rautureau, M. Tsipursky, S.I. Tchoubar, C. and Drits, V.A., (1983) Use of diffraction and Mossbauer methods for the structural and crystallochemical characterisation of nontronites Journal of Applied Crystallography 16 374383 10.1107/S0021889883010651.10.1107/S0021889883010651CrossRefGoogle Scholar
Besson, G. Drits, V.A. Dainyak, L.G. and Smoliar, B.B., (1987) Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data Clay Minerals 22 465478 10.1180/claymin.1987.022.4.10.10.1180/claymin.1987.022.4.10CrossRefGoogle Scholar
Bishop, J.L., Murad, E., Madejová, J., Komadel, P., Wagner, U. and Scheinost, A.C. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: structural analysis of the Fe-bearing smectites Sampor, SWy-1 and SWa-1. Pp. 413419 in: Clays for Our Future. Proceedings 11th International Clay Conference, Ottawa, Canada (Kodama, H., Mermut, A.R. and Torrance, J.K., editors).Google Scholar
Bodine, M.W. Jr, (1987) CLAYFORM: A FORTRAN 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral in a structural formula Computers and Geosciences 13 7788 10.1016/0098-3004(87)90025-2.10.1016/0098-3004(87)90025-2CrossRefGoogle Scholar
Bonnin, D. Calas, G. Suquet, H. and Pexerat, H., (1985) Site occupancy of Fe3+ in Garfield nontronite: a spectroscopic study Physics and Chemistry of Minerals 12 55 64.10.1007/BF00348748CrossRefGoogle Scholar
Busing, W.R., Martin, K.O. and Levy, H.A. (1962) ORFLS, a FORTRAN crystallographic least-squares refinement program. Oak Ridge National Laboratory, Technical Manual No. 305. 75 pp.10.2172/4772079CrossRefGoogle Scholar
Cardile, C.M. and Johnston, J.H., (1985) Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy Clays and Clay Minerals 33 295300 10.1346/CCMN.1985.0330404.10.1346/CCMN.1985.0330404CrossRefGoogle Scholar
Cardile, C.M. and Slade, P.G. (1988) Structural studies of vermiculites with different iron contents by 57Fe Mossbauer spectroscopy. Neues Jahrbuch für Mineralogie Monatshefte, 297308.Google Scholar
Drits, V.A. and Tchoubar, C., (1990) X-ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Micro Divided Silicates and Carbons Berlin Springer Verlag 10.1007/978-3-642-74802-8 371 pp.10.1007/978-3-642-74802-8CrossRefGoogle Scholar
Dyar, M.D., (1987) A review of Mössbauer data on trioctahedral micas: evidence for tetrahedral Fe3+ and cation ordering American Mineralogist 72 102 112.Google Scholar
Dyar, M.D., (1993) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas — Discussion American Mineralogist 78 665 668.Google Scholar
Eggleton, R.A., (1977) Nontronite: chemistry and X-ray diffraction Clay Minerals 12 181194 10.1180/claymin.1977.012.3.01.10.1180/claymin.1977.012.3.01CrossRefGoogle Scholar
Goodman, B.A. Russell, J.D. Fraser, A.R. and Woodhams, F.W.D., (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite Clays and Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.10.1346/CCMN.1976.0240201CrossRefGoogle Scholar
Johnston, J.H. and Cardile, C.M., (1985) Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra Clays and Clay Minerals 33 2130 10.1346/CCMN.1985.0330103.10.1346/CCMN.1985.0330103CrossRefGoogle Scholar
Keeling, J.L. Raven, M.D. and Gates, W.P., (2000) Geology and preliminary characterization of two nontronites from Uley graphite mine, South Australia Clays and Clay Minerals 46 537548 10.1346/CCMN.2000.0480506.10.1346/CCMN.2000.0480506CrossRefGoogle Scholar
Kerr, P.F., (1951) Preliminary report: Reference Clay Minerals. American Petroleum Institute. Research Project No. 49 New York Columbia University.Google Scholar
Klug, H.P. and Alexander, L.E., (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials New York Wiley-Interscience 966 pp.Google Scholar
Lear, P.R. and Stucki, J.W., (1987) Intervalence electron transfer and magnetic exchange in reduced nontronites Clays and Clay Minerals 35 373378 10.1346/CCMN.1987.0350507.10.1346/CCMN.1987.0350507CrossRefGoogle Scholar
Lear, P.R. and Stucki, J.W., (1990) Magnetic properties and site occupancy of iron in nontronite Clay Minerals 25 313 10.1180/claymin.1990.025.1.02.10.1180/claymin.1990.025.1.02CrossRefGoogle Scholar
Luca, V., (1991) Detection of tetrahedral Fe3+ sites in nontronite and vermiculite by Mossbauer spectroscopy Clays and Clay Minerals 39 467477 10.1346/CCMN.1991.0390502.10.1346/CCMN.1991.0390502CrossRefGoogle Scholar
Luca, V. and Cardile, C.M., (1989) Improved detection of tetrahedral Fe3+ in nontronite SWa-1 by Mössbauer spectroscopy Clay Minerals 24 555559 10.1180/claymin.1989.024.3.09.10.1180/claymin.1989.024.3.09CrossRefGoogle Scholar
MacEwan, D.M.C. Wilson, M.J., Brindley, G.W. and Brown, G., (1980) Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 197248 Monograph, 5 .10.1180/mono-5.3CrossRefGoogle Scholar
Madejová, J. Komadel, P. and Cecil, B., (1994) Infrared study of octahedral site populations in smecties Clay Minerals 29 319326 10.1180/claymin.1994.029.3.03.10.1180/claymin.1994.029.3.03CrossRefGoogle Scholar
Manceau, A. and Gates, W.P., (1997) Surface structural model for ferrihydrite Clays and Clay Minerals 43 448460 10.1346/CCMN.1997.0450314.10.1346/CCMN.1997.0450314CrossRefGoogle Scholar
Manceau, A. Bonnin, D. Stone, W.E.E. and Sanz, J., (1990) Distribution of Fe in the octahedral sheet of trioctahedral micas by polarized EXAFS Physics and Chemistry of Minerals 17 363370 10.1007/BF00200132.10.1007/BF00200132CrossRefGoogle Scholar
Manceau, A. Chateigner, D. and Gates, W.P., (1998) Polarized EXAFS, distance-valence least-squares modeling (DLVS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite Physics and Chemistry of Minerals 25 347365 10.1007/s002690050125.10.1007/s002690050125CrossRefGoogle Scholar
Manceau, A. Lanson, B. Drits, V.A. Chateigner, D. Gates, W.P. Wu, J. Huo, D. and Stucki, J.W., (2000) Oxidation-reduction mechanism of iron in dioctahedral smectites: 1. Crystal chemistry of oxidized reference nontronites American Mineralogist 85 133152 10.2138/am-2000-0114.10.2138/am-2000-0114CrossRefGoogle Scholar
Murad, E., (1987) Mössbauer spectra of nontronites: structural implications and characterization of associated iron oxides Zeitschrift für Pflanzenernahrung und Bodenkunde 150 279285 10.1002/jpln.19871500503.10.1002/jpln.19871500503CrossRefGoogle Scholar
Murad, E. Cashion, J.D. and Brown, L.J., (1990) Magnetic ordering in Garfield nontronite under applied magnetic fields Clay Minerals 25 261269 10.1180/claymin.1990.025.3.02.10.1180/claymin.1990.025.3.02CrossRefGoogle Scholar
Norrish, K. and Hutton, J.T., (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples Geochimica et Cosmochimica Acta 33 431453 10.1016/0016-7037(69)90126-4.10.1016/0016-7037(69)90126-4CrossRefGoogle Scholar
Plançon, A., (1981) Diffraction by layer structures containing different kinds of layers and stacking faults Journal of Applied Crystallography 14 300304 10.1107/S0021889881009424.10.1107/S0021889881009424CrossRefGoogle Scholar
Rancourt, D.G., (1993) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas — Reply American Mineralogist 78 669 671.Google Scholar
Rancourt, D.G. Dang, M.-Z. and Lalonde, A.E., (1992) Mossbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas American Mineralogist 77 34 43.Google Scholar
Rémy, P. and Boullé, A., (1961) Sur le différentes variétés de phosphate de fer FePO3 hydraté et anhydre Comptes Rendus de l’Academie des Sciences, Paris 253 2699 2701.Google Scholar
Rozenson, I. and Heller Kallai, L., (1977) Mössbauer spectra of dioctahedral smectites Clays and Clay Minerals 25 94101 10.1346/CCMN.1977.0250204.10.1346/CCMN.1977.0250204CrossRefGoogle Scholar
Sakharov, B.A. Naumov, A.S. and Drits, V.A., (1982) X-ray intensities scattered by layer structure with short range ordering parameters S ≽ 1 and G ≽ 1 Doklady Akademii Nauk SSSR 265 871 874.Google Scholar
Sakharov, B.A. Naumov, A.S. and Drits, V.A., (1982) X-ray diffraction by mixed-layer structures with random distribution of stacking faults Doklady Akademii Nauk SSSR 265 339 343.Google Scholar
Sherman, D.M. and Vergo, N., (1988) Optical (diffuse reflectance) and Mössbauer spectroscopic study of nontronite and related Fe-bearing smectites American Mineralogist 73 1346 1354.Google Scholar
Slade, P.G. Stone, P.A. and Radoslovich, E.W., (1985) Interlayer structures of the two-layer hydrates of Na- and Ca-vermiculites Clays and Clay Minerals 33 5161 10.1346/CCMN.1985.0330106.10.1346/CCMN.1985.0330106CrossRefGoogle Scholar
Smoliar-Zviagina, B.B., (1993) Relationships between structural parameters and chemical composition of micas Clay Minerals 21 377 388.Google Scholar