Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T07:08:53.034Z Has data issue: false hasContentIssue false

Soil Hydroxy-interlayered minerals: A re-interpretation of their crystallochemical properties

Published online by Cambridge University Press:  01 January 2024

Alain Meunier*
Affiliation:
Université de Poitiers — HydrASA UMR 6532 CNRS, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
*
*E-mail address of corresponding author: alain.meunier@univ-poitiers.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydroxy-interlayered minerals (HIMs) are typical of moderately acidic soils. Barnhisel and Bertsch (1989) defined the hydroxy-interlayered clay minerals as a solid-solution series between smectite, vermiculite and pedogenic or aluminous chlorite end-members. Their experimental data for the relationship between the decrease in cation exchange capacity (CEC) and the amount of Al fixed in the interlayers of smectites and vermiculites is reinterpreted using calculated structural, chemical and X-ray diffraction (XRD) evidence. The adsorbed Al ions are in a 6-fold coordination state: [Al(OH)x(H2O)y](3−x)+ with x+y = 6. The polymerization process occurs before saturation of the exchange sites by Al ions. Some of the adsorbed Al ions form polynuclear cations keeping a constant positive charge.

X-ray diffraction patterns of oriented preparations in the ethylene glycol-solvated state suggest that HIMs consist of randomly interstratified expandable and chlorite-like layers (17 and 14.2 Å). Chlorite-like layers result from the selective adsorption of Al complex ions in specific interlayer zones that behave similarly to Al-chlorite (donbassite-like) with incomplete (60%) ‘gibbsite-like’ sheets (chlorite60). Using this framework, HIM XRD patterns can be interpreted by comparison with calculated chlorite60-dismectite mixed-layer mineral patternss using the NEWMOD software.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

April, R.H. Keller, D. and Driscoll, C.T., (2004) Smectite in spodosols from the Adirondack Mountains of New York Clay Minerals 39 99113 10.1180/0009855043910123.CrossRefGoogle Scholar
Aurousseau, P. Curmi, P. Bouille, S. and Charpentier, S., (1983) Les vermiculites hydroxy-alumineuses du Massif Armoricain (France). Approches minéralogique, microanalytique et thermodynamique Geoderma 31 1740 10.1016/0016-7061(83)90081-2.CrossRefGoogle Scholar
Barnhisel, R.I. Bertsch, P.M., Dixon, J.B. and Weed, S.B., (1989) Chlorites and hydroxy-interlayered vermiculite and smectite Minerals in Soil Environments 2 Madison, Wisconsin The Soil Science Society of America Book Series 729788.Google Scholar
Bertsch, P.M., (1987) Conditions of Al13 polymer formation in partially neutralized aluminium solutions Soil Science Society of America Journal 51 825828 10.2136/sssaj1987.03615995005100030046x.CrossRefGoogle Scholar
Dixon, J.B. and Jackson, M.L., (1962) Properties of inter-gradient chlorite-expansible layer silicates of soils Soil Science Society of America Proceedings 26 258362 10.2136/sssaj1962.03615995002600040016x.CrossRefGoogle Scholar
Douglas, L.A., Dixon, J.B. and Weed, S.B., (1989) Vermiculites Minerals in Soil Environments 2 Madison, Wisconsin The Soil Science Society of America Book Series 635674.Google Scholar
Ferrage, E. Tournassat, C. Rinnert, E. and Lanson, B., (2005) Influence of pH on the interlayer cationic composition and hydration state of Ca-montmorillonite: analytical chemistry, chemical modelling and XRD profile modelling study Geochimica et Cosmochimica Acta 69 27972812 10.1016/j.gca.2004.12.008.CrossRefGoogle Scholar
Glaeser, R. and Méring, J., (1954) Isothermes d’hydratation des montmorillonites bi-ioniques (Ca, Na) Clay Minerals Bulletin 2 188193 10.1180/claymin.1954.002.12.13.CrossRefGoogle Scholar
Harris, W.G. and Hollien, K.A., (1988) Reversible and irreversible dehydration of hydroxy-interlayered vermiculite from Coastal Plain soils Soil Science Society of America Journal 52 18081814 10.2136/sssaj1988.03615995005200060053x.CrossRefGoogle Scholar
Kirkland, D.L. and Hajek, B.F., (1972) Formula derivation of Al-interlayered vermiculite in selected soil clays Soil Science 114 317322 10.1097/00010694-197210000-00010.CrossRefGoogle Scholar
Mamy, J. and Gaultier, J.P., (1979) Etude comparée de l’évolution des montmorillonites biioniques K-Ca de Camp-Berteaux et du Wyoming sous l’effet des cycles d’humectation et de dessication Clay Minerals 14 181192 10.1180/claymin.1979.014.3.04.CrossRefGoogle Scholar
McDonald, L.M. Jr. Evangelou, V.P. and Bertsch, P.M., (1998) The potential role of sediment mineralogy in regulating aluminum concentrations in lakewater Water, Air, and Soil Pollution 104 4155 10.1023/A:1004954910658.CrossRefGoogle Scholar
Montargies, E. Michot, L.J. Lhote, F. Fabien, T. and Villiéras, F., (1995) Intercalation of Al13-polyethyleneoxide complexes into montmorillonite clay Clays and Clay Minerals 43 417426 10.1346/CCMN.1995.0430404.CrossRefGoogle Scholar
Plee, D.F. Borg, L. Gatineau, L. and Fripiat, J.J., (1985) High resolution solid state 27A1 and 27Si: nuclear magnetic resonance study of pillared clays Journal of the American Chemical Society 107 23622369 10.1021/ja00294a028.CrossRefGoogle Scholar
Ransom, M.D. Bigham, J.M. Smeck, N.E. and Jaynes, W.F., (1988) Transitional vermiculite-smectite phases in Aqualfs of southwestern Ohio Soil Science Society of America Journal 52 873880 10.2136/sssaj1988.03615995005200030049x.CrossRefGoogle Scholar
Reynolds, R.C. Jr (1985) NEWMOD a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Reynolds, R.C., 8 Brook Rd., Hanover, New Hampshire, USA.Google Scholar
Rich, C.I., (1968) Hydroxy-interlayers in expansible layer silicates Clays and Clay Minerals 16 1530 10.1346/CCMN.1968.0160104.CrossRefGoogle Scholar
Schultz, A. Stone, W.E.E. Poncelet, G. and Fripiat, J.J., (1987) Preparation and characterization of bidimensional zeolite structures obtained from synthetic beidellite and hydroxyaluminum solutions Clays and Clay Minerals 35 251261 10.1346/CCMN.1987.0350402.CrossRefGoogle Scholar
Wilson, M.J. (1987) Soil smectites and related interstratified minerals: recent developments. Proceedings of the International Clay Conference, Denver 1985 (Schultz, L.G., Holphen, H. Van and Mumpton, F.A., editors). The Clay Minerals Society, Bloomington Indiana, pp. 167173.Google Scholar