Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T04:44:50.876Z Has data issue: false hasContentIssue false

Solid-State Nuclear Magnetic Resonance Spectroscopy on Synthetic Ammonium/Aluminum-Saponites

Published online by Cambridge University Press:  28 February 2024

J. T. Kloprogge*
Affiliation:
Department of Geochemistry, Institute of Earth Sciences, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
J. Breukelaar
Affiliation:
Koninklijke/Shell-Laboratorium Amsterdam (Shell Research B.V.), P.O. Box 3003, 1003 AA Amsterdam, The Netherlands
A. E. Wilson
Affiliation:
Koninklijke/Shell-Laboratorium Amsterdam (Shell Research B.V.), P.O. Box 3003, 1003 AA Amsterdam, The Netherlands
J. W. Geus
Affiliation:
Department of Inorganic Chemistry, University of Utrecht, P.O. Box 80.083, 3508 TB Utrecht, The Netherlands
J. B. H. Jansen*
Affiliation:
Department of Geochemistry, Institute of Earth Sciences, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
*
**Present address: TNO-Institute of Applied Physics TU Delft, Department of Inorganic Materials Chemistry, P.O. Box 595, 5600 AN Eindhoven, The Netherlands
***Present address: Bowagemi B.V., Prinses Beatrixlaan 20, 3972 AN Driebergen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ammonium-saponite is hydrothermally grown at temperatures below 300°C from a gel with an overall composition corresponding to (NH4)0.6Mg3Al0.6Si3.4O10(OH)2. Using 27Al and 29Si solid-state Magic Angle Spinning NMR techniques it is demonstrated that synthetic ammonium-saponites have a rather constant Si/AlIV ratio (≈ 5.5) and an AlIV/AlVI ratio that varies between 1.5 and 3.8. The above ratios are independent of the synthesis temperature, although an increasing amount of Si, N, and, to a lesser extent, Al are incorporated in an amorphous phase with increasing temperature. 27Al MAS-NMR is unable to differentiate between Al at octahedral and Al3+ at interlayer sites. CEC, XRD, and the inability to swell prove the AlVI to be mainly on the interlayer sites. Based on the NH4- exchange capacity, X-ray fluorescence, 27Al and 29Si MAS-NMR, it is possible to calculate a relatively accurate structural formula.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Footnotes

*

This paper is a joint contribution from the Debye Institute, University of Utrecht, The Netherlands, and Shell Research B.V.

References

Alma, N. C. M., Hays, G. R., Samoson, A. V., and Lippmaa, E. T., (1984) Characterization of synthetic dioctahedral clays by solid-state silicon-29 and aluminum-27 nuclear magnetic resonance spectrometry: Anal. Chem. 56, 729733.CrossRefGoogle Scholar
Diddams, P. A., Thomas, J. M., Jones, W., Ballantine, J. A., and Purnell, J. H., (1984) Synthesis, characterization, and catalytic activity of beidellite-montmorillonite layered silicates and their pillared analogues: J. Chem. Soc., Chem. Comm. 1984, 13401342.CrossRefGoogle Scholar
Guggenheim, S., (1984) The brittle micas: in Micas: Reviews in Mineralogy 13, S. W. Bailey, ed., Mineralogical Society of America, 61104.CrossRefGoogle Scholar
John, C. S., Alma, N. C. M., and Hays, G. R., (1983) Characterization of transitional alumina by solid-state magic angle spinning aluminium NMR: Appl. Catal. 6, 341346.CrossRefGoogle Scholar
Kinsey, R. A., Kirkpatrick, R. J., Hower, J., Smith, K. A., and Oldfield, E., (1985) High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals: Amer. Mineral. 70, 537548.Google Scholar
Kirkpatrick, R. J., Smith, K. A., Schramm, S., Turner, G., and Yang, W.-H., (1985) Solid-state nuclear magnetic resonance spectroscopy of minerals: Ann. Rev. Earth Planet. Sci. 13, 2947.CrossRefGoogle Scholar
Kloprogge, J. T., (1992) Pillared Clays: Preparation and Characterization of Clay Minerals and Aluminum-based Pillaring Agents: Geologica Ultraiectina 91, Ph.D. Thesis, University of Utrecht, The Netherlands.Google Scholar
Kloprogge, J. T., Breukelaar, J., Jansen, J. B. H., and Geus, J. W., (1993) Development of ammonium-saponites from gels with variable ammonium concentrations and water contents at low temperatures: Clays & Clay Minerals 41, 103110.CrossRefGoogle Scholar
Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G., and Grimmer, A.-R., (1980) Structural studies of silicates by solid-state high-resolution 29Si NMR: J. Amer. Chem. Soc. 102, 48894893.CrossRefGoogle Scholar
Lipsicas, M., Raythatha, R. H., Pinnavaia, T. J., Johnson, I. D., Giese, R. F. Jr., Costanzo, P. M., and Roberts, J. L., (1984) Silicon and aluminium site distributions in 2: 1 layered silicate clays: Nature 309, 604607.CrossRefGoogle Scholar
Loewenstein, W., (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates: Amer. Mineral. 39, 9296.Google Scholar
Sanz, J., and Serratosa, J. M., (1984) 29Si and 27Al high-resolution MAS-NMR spectra of phyllosilicates: J. Amer. Chem. Soc. 106, 47904793.CrossRefGoogle Scholar
Suquet, H., Malard, C., Copin, E., and Pezerat, H., (1981) Variation du parametre b et de la distance basale d001 dans une serie de saponites a charge croissante. I. Etats hydrates: Clay Miner. 16, 5367.CrossRefGoogle Scholar
Weiss, C. A., Altaner, S. P., and Kirkpatrick, R. J., (1987) High resolution 29Si NMR spectroscopy of 2: 1 layer silicates: correlation among chemical shift, structural distortions, and chemical variations: Amer. Mineral. 72, 935942.Google Scholar
Wilson, M. A., (1987) NMR Techniques and Applications in Geochemistry and Soil Chemistry: Pergamon Press, Oxford, 353 pp.Google Scholar
Woessner, D. E., (1989) Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy: Amer. Mineral. 74: 203215.Google Scholar