Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-11T07:46:44.013Z Has data issue: false hasContentIssue false

Sorption of Neptunium on Clays and Clay Minerals — A Review

Published online by Cambridge University Press:  01 January 2024

Daniel R. Fröhlich*
Affiliation:
Institute of Physical Chemistry, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
*
*E-mail address of corresponding author: daniel.froehlich@partner.kit.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During recent decades, the search for possible repositories for high-level nuclear waste has yielded large amounts of sorption data for actinides on different minerals. Clays and clay minerals are of special interest as potential host-rock formations and backfill materials, by virtue of their good retardation properties. Neptunium (Np) is one of the actinides which is considered in long-term scenarios due to its long-lived nuclide 237Np (t1/2 = 2.1 × 106 y). Because neptunium sorption is heavily dependent on the experimental conditions, comparison of sorption data from different experiments is challenging. Normalizing reported data with respect to the surface area of the sorbent enables conversion of conventional distribution coefficients (Kd) to normalized (Ka) values, which improves comparability among the results of different experiments. The present review gives a detailed summary of sorption data of Np on clays and clay minerals and examines critically the applicability of the Ka approach.

Type
Article
Copyright
Copyright © Clay Minerals Society 2015

References

Allard, B. Olofsson, U. and Torstenfelt, B., 1984 Environmental actinide chemistry Inorganica Chimica Acta 94 205221.CrossRefGoogle Scholar
Aksoyoglu, S. Burkart, W. and Goerlich, W., 1991 Sorption of neptunium on clays Journal of Radioanalytical and Nuclear Chemistry 149 119122.CrossRefGoogle Scholar
Amayri, S. Jermolajev, A. and Reich, T., 2011 Neptunium(V) sorption on kaolinite Radiochimica Acta 99 349357.CrossRefGoogle Scholar
André, C. Sardin, M. Vitorge, P. and Fauré, M.H., 1998 Analysis of breakthrough curves of Np(V) in clayey sand packed column in terms of mass transfer kinetics Journal of Contaminant Hydrology 35 161173.CrossRefGoogle Scholar
Bauer, A. and Berger, G., 1998 Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80°C Applied Geochemistry 13 905916.CrossRefGoogle Scholar
Begg, J.D. Zavarin, M. Zhao, P. Tumey, S.J. Powell, B. and Kersting, A.B., 2013 Pu(V) and Pu(IV) sorption to montmorillonite Environmental Science & Technology 47 51465153.CrossRefGoogle ScholarPubMed
Benedicto, A. Begg, J.D. Zhao, P. Kersting, A.B. Missana, T. and Zavarin, M., 2014 Effect of major cation water composition on the ion exchange of Np(V) on montmorillonite: NpO2+-Na+-K+-Ca2+-Mg2+ selectivity coefficients Applied Geochemistry 47 177185.CrossRefGoogle Scholar
Bidoglio, G. Offermann, P. and Saltelli, A., 1987 Neptunium migration in oxidizing clayey sand Applied Geochemistry 2 275284.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B. (2003) Far field sorption data bases for performance assessment of a high-level radioactive waste repository in an undisturbed Opalinus Clay host rock. PSI technical report 03-08, Paul Scherrer Institut, Villigen, Switzerland.Google Scholar
Bradbury, M.H. and Baeyens, B. (2005) Experimental and modeling investigations on Na-illite: Acid-base behaviour and the sorption of strontium, nickel, europium and uranyl. PSI technical report 05-02, Paul Scherrer Institut, Villigen, Switzerland.Google Scholar
Bradbury, M.H. and Baeyens, B., 2006 Modelling sorption data for the actinides Am(III), Np(V) and Pa(V) on montmorillonite Radiochimica Acta 94 619625.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B., 2009 Sorption modeling on illite Part II: Actinide sorption and linear free energy relationships Geochimica et Cosmochimica Acta 73 10041013.CrossRefGoogle Scholar
Braithwaite, A. Richardson, S. Moyes, L.N. Livens, F.R. Bunker, D.J. Hughes, C.R. Smith, J.T. and Hilton, J., 2000 Sorption kinetics of uranium-238 and neptunium-237 on a glacial sediment Czechoslovak Journal of Physics 50 265269.CrossRefGoogle Scholar
Brasser, T., Droste, J., Müller-Lyda, I., Neles, J., Sailer, M., Schmidt, G., and Steinhoff, M. (2008) Endlagerung wärmeentwickelnder radioactiver Abfälle in Deutschland. GRS report, GRS-247, Gesellschaft für Anlagen- und Reaktorsicherheit, Braunschweig, Germany.Google Scholar
Brendler, V. Vahle, A. Arnold, T. Bernhard, G. and Fanghänel, T., 2003 RES3T-Rossendorf expert system for surface and sorption thermodynamics Journal of Contaminant Hydrology 61 281291.CrossRefGoogle ScholarPubMed
Brigatti, M.F. Galán, E. Theng, B.K.G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Structure and mineralogy of clay minerals Handbook of Clay Science Amsterdam Elsevier.Google Scholar
Bruggeman, C., Salah, S., and Maes, N. (2012) Americium retention and migration behaviour in Boom Clay. External Report of the Belgian Nuclear Research Centre, SCK·CENER-201, Mol, Belgium.Google Scholar
De Craen, M., Wang, L., Van Geet, M., and Moors, H. (2004) Geochemistry of Boom Clay pore water at the Mol site. Scientific Report, SCK·CEN-BLG-990, Belgian Nuclear Research Centre, Mol, Belgium.Google Scholar
Dierking, S. Amayri, S. and Reich, T., 2008 Actinide sorption studies using the isotopes 237Np and 239Np Journal of Nuclear Science and Technology Supplement6 133137.CrossRefGoogle Scholar
Dogan, A.U. Dogan, M. Onal, M. Sarikaya, Y. Aburub, A. and Wurster, D.E., 2006 Baseline studies of the Clay Minerals Society Source Clays: Specific surface area by the Brunauer Emmett Teller (BET) method Clays and Clay Minerals 54 6266.CrossRefGoogle Scholar
Fröhlich, D.R. Amayri, S. Drebert, J. and Reich, T., 2011 Sorption of neptunium(V) on Opalinus Clay under aerobic/anaerobic conditions Radiochimica Acta 99 7177.CrossRefGoogle Scholar
Fröhlich, D.R. Amayri, S. Drebert, J. Grolimund, D. Huth, J. Kaplan, U. Krause, J. and Reich, T., 2012 Speciation of Np(V) uptake by Opalinus Clay using synchrotron microbeam techniques Analytical and Bioanalytical Chemistry 404 21512162.CrossRefGoogle ScholarPubMed
Fröhlich, D.R. Amayri, S. Drebert, J. and Reich, T., 2012 Influence of temperature and background electrolyte on the sorption of neptunium(V) on Opalinus Clay Applied Clay Science 69 4349.CrossRefGoogle Scholar
Fröhlich, D.R. Amayri, S. Drebert, J. and Reich, T., 2013 Influence of humic acid on neptunium(V) sorption and diffusion in Opalinus Clay Radiochimica Acta 101 553560.CrossRefGoogle Scholar
Geckeis, H. Lützenkirchen, J. Polly, R. Rabung, T. and Schmidt, M., 2013 Mineral—water interface reactions of actinides Chemical Reviews 113 10161062.CrossRefGoogle ScholarPubMed
Gorgeon, L. (1994) Contribution à la modélisation physicchimique de la retention de radioéléments à vie longue par des matérieux argileux. PhD thesis, Université Paris 6, Paris, France.Google Scholar
Guillaumont, R. Fanghänel, T. Fuger, J. Grenthe, I. Neck, V. Palmer, D.A. Rand, M.H., Mompean, F.J. Illemassene, M. Domenech-Orti, C. and Said, K.B., 2003 Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium Amsterdam Elsevier.Google Scholar
Hart, K.P. Payne, T.E. Robinson, B.J. and Van Iseghem, P., 1994 Neptunium uptake on Boom Clay — Time dependence and association of Np with fine particles Radiochimica Acta 66/67 1922.CrossRefGoogle Scholar
Hartmann, E. Baeyens, B. Bradbury, M.H. Geckeis, H. and Stumpf, T., 2008 A spectroscopic characterization and quantification of M(III)/clay mineral outer-sphere complexes Environmental Science & Technology 42 76017606.CrossRefGoogle ScholarPubMed
Hartmann, E. Geckeis, H. Rabung, T. Lützenkirchen, J. and Fanghänel, T., 2008 Sorption of radionuclides onto natural clay rocks Radiochimica Acta 96 699707.CrossRefGoogle Scholar
Hartmann, E. Brendebach, B. Polly, R. Geckeis, H. and Stumpf, T., 2011 Characterization and quantification of Sm(III)/ and Cm(III)/clay mineral outer-sphere species by TRLFS in D2O and EXAFS studies Journal of Colloid and Interface Science 353 562568.CrossRefGoogle ScholarPubMed
Henrion, P.N. Monsecour, M. and Put, M., 1985 Migration studies of radionuclides in Boom Clay Engineering Geology 21 311319.CrossRefGoogle Scholar
Higgo, J.J.W. and Rees, L.V.C., 1986 Adsorption of actinides by marine sediments: Effect of the sediment/water ratio on the measured distribution ratio Environmental Science & Technology 20 483490.CrossRefGoogle Scholar
Kasar, S. Kumar, S. Kar, A. Bajpai, R.K. Kaushik, C.P. and Tomar, B.S., 2014 Retention behaviour of Cs(I), Sr(II), Tc(VII) and Np(V) on smectite-rich clay Journal of Radioanalytical and Nuclear Chemistry 300 7175.CrossRefGoogle Scholar
Keeney-Kennicutt, W.L. and Morse, J.W., 1984 The interaction of Np(V)O2+ with common mineral surfaces in dilute aqueous solutions and seawater Marine Chemistry 15 133150.CrossRefGoogle Scholar
Kim, J.I., Freeman, A.J., 1986 Chemical behaviour of transuranic elements in natural aquatic systems Handbook on the Physics and Chemistry of the Actinides Amsterdam Elsevier.Google Scholar
Kozai, N. Ohnuki, T. and Muraoka, S., 1993 Sorption characteristics of neptunium by sodium-smectite Journal of Nuclear Science and Technology 30 11531159.CrossRefGoogle Scholar
Kozai, N. Ohnuki, T. Matsumoto, J. Banba, T. and Ito, Y., 1996 A study of specific sorption of neptunium(V) on smectite in low pH solution Radiochimica Acta 75 149158.CrossRefGoogle Scholar
Kozai, N. Yamasaki, S. and Ohnuki, T., 2014 Application of simplified desorption method to study on sorption of neptunium(V) on montmorillonite-based mixtures Journal of Radioanalytical and Nuclear Chemistry 299 15811587.CrossRefGoogle Scholar
Kozaki, T. Sato, Y. Nakajima, M. Kato, H. Sato, S. and Ohashi, H., 1999 Effect of particle size on the diffusion behavior of some radionuclides in compacted bentonite Journal of Nuclear Materials 270 265272.CrossRefGoogle Scholar
Lemire, R.J. Fuger, J. Nitsche, H. Potter, P. Rand, M.H. Rydberg, J. Spahiu, K. Sullivan, J.C. Ullman, W.J. Vitorge, P. and Wanner, H., 2001 Chemical Thermodynamics of Neptunium and Plutonium Amsterdam Elsevier.Google Scholar
Li, P. Ma, F. Shi, Q. Guo, Z. and Wu, W., 2015 Effects of pH, ionic strength and humic acid on the sorption of neptunium(v) to Na-bentonite Journal of Molecular Liquids 206 285292.CrossRefGoogle Scholar
Lieser, K.H. and Mühlenweg, U., 1988 Neptunium in the hydrosphere and in the geosphere Radiochimica Acta 44 129134.CrossRefGoogle Scholar
López-Galindo, A. Fenoll Hach-Ali, P. Pushkarev, A.V. Lytovchenko, A.S. Baker, J.H. and Pushkarova, R.A., 2008 Tritium redistribution between water and clay minerals Applied Clay Science 39 151159.CrossRefGoogle Scholar
Marsac, R. Banik, N.L. Lützenkirchen, J. Marquardt, C.M. Dardenne, K. Rothe, J. Diascorn, A. Kupcik, T. Schäfer, T. and Geckeis, H., 2015 Neptunium redox speciation at the illite surface Geochimica et Cosmochimica Acta 152 3951.CrossRefGoogle Scholar
Mincher, B.J. Fox, R.V. Cooper, D.C. and Groenewold, G.S., 2003 Neptunium and plutonium sorption to Snake River Plain, Idaho soil Radiochimica Acta 91 397401.CrossRefGoogle Scholar
Mironenko, M.V. Malikov, D.A. Kulyako, Y.M. and Myasoedov, B.F., 2006 Sorption of Np(V) on kaolinite from solutions of MgCl2 and CaCl2 Radiochemistry 48 5762.Google Scholar
Mironenko, M.V. Malikov, D.A. Kulyako, Y.M. and Myasoedov, B.F., 2006 Sorption of Np(V) on montmorillonite from solutions of MgCl2 and CaCl2 Radiochemistry 48 6367.Google Scholar
Nagasaki, S. Ahn, J. Tanaka, S. and Suzuki, A., 1996 Sorption behavior of Np(IV), Np(V) and Am(III) in the disturbed zone between engineered and natural barriers Journal of Radioanalytical and Nuclear Chemistry Letters 214 381389.CrossRefGoogle Scholar
Nagasaki, S. and Tanaka, S., 2000 Sorption equilibrium and kinetics of NpO2+ on dispersed particles of Na-montmorillonite Radiochimica Acta 88 705709.CrossRefGoogle Scholar
Nagasaki, S. Tanaka, S. Todoriki, M. and Suzuki, A., 1998 Sorption equilibrium and kinetics of NpO2+ uptake onto illite Radiochimica Acta 82 263267.CrossRefGoogle Scholar
Nagasaki, S. Tanaka, S. and Suzuki, A., 1999 Sorption of neptunium on bentonite and its migration in geosphere Colloids and Surfaces A: Physicochemical and Engineering Aspects 155 137143.CrossRefGoogle Scholar
NAGRA (2002) Projekt Opalinuston — Synthese der geowiss enschaftlichen Untersuchungsergebnisse, Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. Technical Report NTB 02–03. NAGRA Nationale Genossenschaft für die Lagerung radioaktiver Abfälle, Wettingen, Switzerland.Google Scholar
Nash, K. Fried, S. Friedman, A.M. and Sullivan, J.C., 1981 Redox behavior, complexing, and adsorption of hexavalent actinides by humic acid and selected clays Environmental Science & Technology 15 834837.CrossRefGoogle Scholar
Nebelung, C., Brendler, V., Křepelová, A., and Brockmann, S. (2007) Sorption of uranium and caesium on bentonite, experiments and modelling. EU report NF-PRO D2.515 (Contract Number: FI6W-CT-2003-02389).Google Scholar
Niitsu, Y. Sato, S. Ohashi, H. Sakamoto, Y. Nagao, S. Ohnuki, T. and Muraoka, S., 1997 Effects of humic acid on the sorption of neptunium(V) on kaolinite Journal of Nuclear Materials 248 328332.CrossRefGoogle Scholar
Ohnuki, T. Yoshida, T. Ozaki, T. Kozai, N. Sakamoto, F. Nankawa, T. Suzuki, Y. and Francis, A.J., 2007 Chemical speciation and association of plutonium with bacteria, kaolinite clay, and their mixture Environmental Science & Technology 41 31343139.CrossRefGoogle ScholarPubMed
Payne, T.E. Brendler, V. Comarmond, M.J. and Nebelung, C., 2011 Assessment of surface area normalisation for interpreting distribution coefficients (Kd) for uranium sorption Journal of Environmental Radioactivity 102 888895.CrossRefGoogle ScholarPubMed
Pearson, F.J., Arcos, D., Bath, A., Boissin, J.-Y., Fernández, A.M., Gäbler, H.-E., Gaucher, E., Gautschi, A., Griffault, L., Hernán, P., and Waber, H.N. (2003) Mont Terri project — Geochemistry of water in the Opalinus Clay formation at the Mont Terri rock laboratory. Reports of the Federal Office for Water and Geology, Geology Series, No. 5, Bern, Switzerland.Google Scholar
Poinssot, C. Baeyens, B. and Bradbury, M.H., 1999 Experimental and modeling studies of cesium sorption on illite Geochimica et Cosmochimica Acta 63 32173227.CrossRefGoogle Scholar
Pratopo, M.I. Yamaguchi, T. Moriyama, H. and Higashi, K., 1993 Sorption and colloidal behavior of Np(IV) in a bentonite-carbonate solution system Journal of Nuclear Science and Technology 30 560566.CrossRefGoogle Scholar
Pruett, R.J. and Webb, H.L., 1993 Sampling and analysis of KGa-1B well-crystallized kaolin source clay Clays and Clay Minerals 41 514519.CrossRefGoogle Scholar
Rabung, T. Pierret, M.C. Bauer, A. Geckeis, H. Bradbury, M.H. and Baeyens, B., 2005 Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: Batch sorption and time-resolved laser fluorescence spectroscopy experiments Geochimica et Cosmochimica Acta 69 53935402.CrossRefGoogle Scholar
Reich, T. Reich, T.Y. Amayri, S. Drebert, J. Banik, N.L. Buda, R.A. Kratz, J.V. and Trautmann, N., 2007 Application of XAFS spectroscopy to actinide environmental science AIP Conference Proceedings 882 179183.CrossRefGoogle Scholar
Runde, W. Conradson, S.D. Efurd, D.W. Lu, N.P. Van Pelt, C.E. and Tait, C.D., 2002 Solubility and sorption of redoxsensitive radionuclides (Np, Pu) in J-13 water from the Yucca Mountain site: Comparison between experiment and theory Applied Geochemistry 17 837853.CrossRefGoogle Scholar
Sabodina, M.N. Kalmykov, S.N. Sapozhnikov, Y.A. and Zakharova, E.V., 2006 Neptunium, plutonium and 137Cs sorption by bentonite clays and their speciation in pore waters Journal of Radioanalytical and Nuclear Chemistry 270 349355.CrossRefGoogle Scholar
Sabodina, M.N. Kalmykov, S.N. Artem’eva, K.A. Zakharova, E.V. and Sapozhnikov, Y.A., 2006 Behavior of Cs(I), Np(V), Pu(IV), and U(VI) in pore water of bentonite Radiochemistry 48 437441.CrossRefGoogle Scholar
Sabodina, M.N. Zakharova, E.V. Kalmykov, S.N. Pokholok, K.V. and Menyailo, A.A., 2008 Sorption of 237Np(V), 238U(VI), and 137Cs on clays: Role of surface films of Fe(III) compounds Radiochemistry 50 9197.CrossRefGoogle Scholar
Samadfam, M. Jintoku, T. Sato, S. Ohashi, H. Mitsugashira, T. Hara, M. and Suzuki, Y., 2000 Effects of humic acid on the sorption of Am(III) and Cm(III) on kaolinite Radiochimica Acta 88 717721.CrossRefGoogle Scholar
Schmeide, K. and Bernhard, G., 2010 Sorption of Np(V) and Np(IV) onto kaolinite: Effects of pH, ionic strength, carbonate and humic acid Applied Geochemistry 25 12381247.CrossRefGoogle Scholar
Sposito, G. Skipper, N.T. Sutton, R. Park, S.H. Soper, A.K. and Greathouse, J.A., 1999 Surface geochemistry of the clay minerals Proceedings of the National Academy of Sciences 96 33583364.CrossRefGoogle ScholarPubMed
Stammose, D. Ly, J. Pitsch, H. and Dolo, J.-M., 1992 Sorption mechanisms of three actinides on a clayey mineral Applied Clay Science 7 225228.CrossRefGoogle Scholar
Tachi, Y. Nakazawa, T. Ochs, M. Yotsuji, K. Suyama, T. Seida, Y. Yamada, N. and Yui, M., 2010 Diffusion and sorption of neptunium(V) in compacted montmorillonite: Effects of carbonate and salinity Radiochimica Acta 98 711718.CrossRefGoogle Scholar
Takahashi, Y. Kimura, T. and Minai, Y., 2002 Direct observation of Cm(III)-fulvate species on fulvic acidmontmorillonite hybrid by laser-induced fluorescence spectroscopy Geochimica et Cosmochimica Acta 66 112.CrossRefGoogle Scholar
Torstenfelt, B. Rundberg, R.S. and Mitchell, A.J., 1988 Actinide sorption on granites and minerals as a function of pH and colloids/pseudocolloids Radiochimica Acta 44/45 111117.CrossRefGoogle Scholar
Turner, D.R. Pabalan, R.T. and Bertetti, F.P., 1998 Neptunium(V) sorption on montmorillonite: An experimental and surface complexation modeling study Clays and Clay Minerals 46 256269.CrossRefGoogle Scholar
Turrero, M.J. Fernández, A.M. Peña, J. Sánchez, M.D. Wersin, P. Bossart, P. Sánchez, M. Melón, A. Garralón, A. Yllera, P. Hernán, P. and Gómez, P., 2006 Pore water chemistry of a Paleogene continental mudrock in Spain and a Jurassic marine mudrock in Switzerland: Sampling methods and geochemical interpretation Journal of Iberian Geology 32 233258.Google Scholar
Van Olphen, H. and Fripiat, J.J., 1979 Data Handbook for Clay Materials and other Non-metallic Minerals Oxford, UK and Elmsford, New York Pergamon Press.Google Scholar
Weijuan, L. and Zuyi, T., 2003 Sorption and desorption of neptunium(V) on calcareous soil and its components: A comparative study Journal of Radioanalytical and Nuclear Chemistry 258 659664.CrossRefGoogle Scholar
Wu, T. Amayri, S. Drebert, J. Van Loon, L.R. and Reich, T., 2009 Neptunium(V) sorption and diffusion in Opalinus Clay Environmental Science & Technology 43 65676571.CrossRefGoogle Scholar
Yamamoto, K. Yanagi, T. Senoo, M. and Sakamoto, Y., 1990 Sorption behavior of neptunium(V) ion on clay sorbent Journal of Nuclear Science and Technology 27 626630.CrossRefGoogle Scholar
Zavarin, M. Powell, B.A. Bourbin, M. Zhao, P. and Kersting, A.B., 2012 Np(V) and Pu(V) ion exchange and surface-mediated reduction mechanisms on montmorillonite Environmental Science & Technology 46 26922698.CrossRefGoogle ScholarPubMed