Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T04:40:44.310Z Has data issue: false hasContentIssue false

Sorption of Trace Constituents from Aqueous Solutions Onto Secondary Minerals. II. Radium

Published online by Cambridge University Press:  02 April 2024

L. L. Ames
Affiliation:
Battelle, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352
J. E. McGarrah
Affiliation:
Battelle, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352
B. A. Walker
Affiliation:
Battelle, Pacific Northwest Laboratories, P.O. Box 999, Richland, Washington 99352
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radium sorption efficiencies as a function of temperature, Ra concentration, and secondary mineral sorbate were determined in a 0.01 M NaCl solution. Radium sorption on a characterized clinoptilolite, montmorillonite, nontronite, opal, silica gel, illite, kaolinite, and glauconite under comparable experimental conditions allowed determination of Ra sorption efficiency curves for each, through use of Freundlich constants, over the same temperature and initial Ra solution concentration range. Similar sorption data for U on the same secondary minerals over the same temperatures allowed comparison of sorption efficiencies for Ra and U. Clinoptilolite, illite, and nontronite were the most efficient Ra sorbents, while opal and silica gel were the poorest Ra sorbents. Generally, Ra sorption on secondary minerals was much greater than U sorption under the same experimental conditions.

Резюме

Резюме

Определены в растворе 0,01 M NaCl эффективности сорбции радия в зависимости от температуры, концентрации Ra и вторичных минералов. Сорбция радия на схарактеризованном клиноптилолите, монтмориллоните, нонтроните, опале, кремнеземном геле, иллите, каолините, и глауконите в аналогичных экспериментальных условиях позволяет определить кривые эффективности сорбции Ra, использу япостоянные фрейндлиха для каждого минерала для одинаковых диапазонов температуры и начальной концентрации Ra в растворе. Подобные данные по сорбции U на таких же вторичных минералах при одинаковых температурах позволяют сравнивать эффективности Ra и U. Клиноптилолит, иллит и нонтронит являлись наиболее эффективными сорбентами Ra, в то время как опал и кремнеземный гель были плохими сорбентами радия. В основном сорбция Ra на вторичных минералах была значительно больше, чем сорбция U при одинаковых экспериментальных условиях. [E.G.]

Resümee

Resümee

Die Radiumadsorptionseffizienz wurde als Funktion der Temperatur, der Ra-Konzentration und des adsorbierenden sekundären Minerals in einer 0,01 M NaCl-Lösung bestimmt. Die Ra-Adsorption an genau bestimmtem Klinoptilolith, Montmorillonit, Nontronit, Opal, Silikagel, Illit, Kaolinit, und Glaukonit unter vergleichbaren experimentellen Bedingungen erlaubte die Bestimmung der Ra-Adsorptionseffizienzkurve für jedes Mineral, wozu die Freundlich-Konstanten für den gleichen Temperaturbereich und den ursprünglichen Ra-Konzentrationsbereich in der Lösung verwendet wurden. Änliche Adsorptionsdaten für U an den gleichen sekundären Mineralen im gleichen Temperaturbereich ermöglichten den Vergleich der Adsorptionseffizienzen für Ra und U. Klinoptilolith, Illit, und Nontronit waren die wirksamsten Ra-Adsorbenten, während Opal und Silikagel am schlechtesten Ra adsorbierten. Im allgemeinen war die Ra-Adsorption an sekundäre Minerale viel stärker als die U-Adsorption unter sonst gleichen experimentellen Bedingungen. [U.W.]

Résumé

Résumé

Les efficacités de sorption de radium, en fonction de la température, de la concentration de Ra, et de sorbate minéral secondaire, ont été déterminées dans une solution 0,01 M NaCl. La sorption de radium sur des clinoptilites, montmorillonites, nontronites, opals, gels silices, illites, kaolinites, et glauconites caracterisés sous des conditions expérimentales comparables a permis la détermination de courbes d'efficacité de sorption de Ra pour chacun, par l'emploi des constantes de Freundlich, sur la même gamme de températures et de concentrations initiales de Ra. Des données de sorption pareilles pour U sur les mêmes minéraux secondaires aux mêmes températures ont permis la comparaison des efficacités de sorption pour Ra et U. La clinoptilolite, l'illite, et la nontronite étaient les sorbants de Ra les plus efficaces, tandis que ľopal et le gel silice étaient les sorbants de Ra les moins efficaces. Généralement, la sorption de Ra sur les minéraux secondaires était plus grande que la sorption d'U sous les mêmes conditions expérimentales. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

References

Adamson, A. W., 1976 Physical Chemistry of Surfaces New York Wiley.Google Scholar
Ames, L. L., McGarrah, J. E. and Walker, B. A., 1983 Sorption of trace constituents from aqueous solution onto secondary minerals. I. Uranium Clays & Clay Minerals 31 321334.CrossRefGoogle Scholar
Ames, L. L., McGarrah, J. E., Walker, B. A. and Salter, P. F., 1983 Uranium and radium sorption on amorphous ferric oxyhydroxide Chem. Geol. .CrossRefGoogle Scholar
Dyck, W. and Kimberley, M. M., 1978 The mobility and concentration of uranium and its decay products in temperate surficial environments Uranium Deposits, Their Mineralogy and Origin 6365.Google Scholar
Freundlich, H., 1922 Colloid and Capillary Chemistry London Methion and Co. 172179.Google Scholar
Granger, H. C., 1963 Radium migration and its effect on the apparent age of uranium deposits at Ambrosia Lake, New Mexico U.S. Geol. Surv. Prof. Pap. 475–B B60B62.Google Scholar
Granger, H. C., Santos, E. S., Dean, B. G. and Moore, F. B., 1961 Sandstone type uranium deposits at Ambrosia Lake, New Mexico—an interim report Econ. Geol. 56 11791209.CrossRefGoogle Scholar
Kaufmann, R. F., Eadie, G. G. and Russel, C. R., 1976 Effects of uranium mining and milling on groundwater in the Grants Mineral Belt, New Mexico Ground Water 14 296308.CrossRefGoogle Scholar
Korner, L. A. and Rose, A. W., 1977 Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits U.S. Dept. Energy Kept. GJO–1659–20 6773.Google Scholar
Langmuir, D. and Chatham, J. R., 1980 Groundwater prospecting for sandstone type uranium deposits: A preliminary comparison of the merits of mineral-solution equilibria, and single-element tracer methods J. Geochem. Explor. 13 201219.CrossRefGoogle Scholar
Nathwani, J. S. and Phillips, C. R., 1979 Adsorption of 226Ra by soils in the presence of Ca2+ ions. Specific adsorption (II) Chemosphere 5 293299.CrossRefGoogle Scholar
Starik, I. Ye., 1936 Migration of uranium and radium Acad. V. I. Vernadsky’s Volume Commemorating Fifty Years of Scientific and Pedagogical Activity Moscow Izd. Akad., Nauk SSSR.Google Scholar
Titayeva, N. A. and Veksler, T. I., 1977 The state of radioactive equilibrium in the uranium and thorium series as an indicator of migration of radioactive elements and active interaction between phases under natural conditions Geokhimiya 11111120.Google Scholar