Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T00:09:10.153Z Has data issue: false hasContentIssue false

Statistical Analysis of Clay Mineral Assemblages in Fault Gouges

Published online by Cambridge University Press:  02 April 2024

K. Klima
Affiliation:
Institute of Engineering Geology and Applied Mineralogy, Technical University of Graz, Rechbauerstraße 12, A-8010 Graz, Austria
G. Riedmüller
Affiliation:
Institute of Engineering Geology and Applied Mineralogy, Technical University of Graz, Rechbauerstraße 12, A-8010 Graz, Austria
K. Stattegger
Affiliation:
Institute of Geology and Paleontology, University of Graz, Heinrichstraße 26, A-8010 Graz, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The clay mineral distributions in fault gouges from shear zones in several slates, phyllites, mica schists, and gneisses of the Eastern Alps were statistically analyzed for consistencies in their occurrence. Discriminant analyses suggested significant groupings of the most common minerals: illite, smectite, kaolinite, and chlorite. The clay mineral distributions in the fault gouges appeared to be related to regional geological units. No relationship, however, was found with the piles of nappes of the Alps. The influence of the mineralogical composition of the parent rock on the clay mineral assemblages appeared to be minor, but the shear behavior of the parent rocks, which is mainly a function of rock strength, was found to control the formation of the clay minerals. In hard rocks (e.g., gneisses), solution transfer at an early stage of the shear process was apparently extensive enough to favor kaolinite formation. As shearing continued, the rate of solution transfer gradually decreased and favored the formation of smectite. In softer rocks (e.g., phyllites), the extent of solution transfer during the shear process was less than in the gneisses and generated an environment that favored smectite formation, even during the early stages of shearing.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

References

Bjerrum, L., Brekke, T. L., Moum, J. and Selmer-Olsen, R., 1963 Some Norwegian studies and experiences with swelling material in rock gouges Felsmech. Ing. Geol. 1 2331.Google Scholar
Brekke, T. L. and Howard, T. R., 1973 Functional classification of gouge materials from seams and faults in relation to stability problems in underground openings Final report submitted to U.S. Bur Berkeley, California Reclamation, Dept. Civil Engin., Univ. Calif..Google Scholar
Davis, J. C., 1973 Statistics and Data Analysis in Geology New York Wiley.Google Scholar
Dixon, W. J., 1983 BMDP Statistical Software: Ursiv. Berkeley, California Calif. Press.Google Scholar
Höwing, K. D. (1984) Das Kriechverhalten gefüllter Gesteinstrennflächen und dessen Auswirkung auf die Langzeitstabilität von Felsböschungen: Bochumer Geol. Geo-techn. Arb. 13, 163 pp.Google Scholar
Höwing, K. D., Kutter, H. K. and Heitfeld, K. H., 1985 Kriechverhalten gefüllter Gesteinstrennflächen Ingenieurgeologische Probleme im Grenzbereich zwischen Locker- und Festgesteinen Berlin Springer.Google Scholar
Jackson, M. L., 1956 Soil Chemical Analysis; Advanced Course .Google Scholar
Jennrich, R. I., Enslein, K., Ralston, A. and Wilf, H. S., 1977 Stepwise discriminant analysis Statistical Methods for Digital Computers New York Wiley.Google Scholar
Johns, W. D., Grim, R. E. and Bradley, W.F., 1954 Quantitative estimations of clay minerals by diffraction methods J. Sed. Petr. 24 242251.Google Scholar
Krzanowski, W. J., 1977 The performance of Fisher’s linear discriminant function under non optimal conditions Tech-nometrics 19 191208.Google Scholar
Lama, R. D. and Vutukuri, V. S., 1978 Handbook on Mechanical Properties of Rocks, Vol. 2 Clausthal, Germany Trans Tech Publications.Google Scholar
Lama, R. D. and Vutukuri, V. S., 1978 Handbook on Mechanical Properties of Rocks, Vol. 4 Clausthal, Germany Trans Tech Publications.Google Scholar
Le Maitre, R. W., 1982 Numerical Petrology Amsterdam Elsevier.Google Scholar
Mandl, G., de Jong, L. N. J. and Maltha, A., 1977 Shear zones in granular material Rock Mechanics 9 95144.CrossRefGoogle Scholar
Müller-Vonmoos, M., Kahr, G. and Honold, P., 1981 Investigation of the shear behaviour of pure clays Prog. Abstracts, 7th Int. Clay Conf, Bologna, Pavia, 1981 208.Google Scholar
Obert, L., Brady, B. T. and Schmechel, F. W., 1976 The effect of normal stiffness on the shear resistance of rock Rock Mechanics 8 5772.CrossRefGoogle Scholar
Reyment, R. A., Blackith, R. E. and Campbell, N. A., 1984 Multivariate Morphometrics .Google Scholar
Riedmüller, G., 1978 Neoformation and transformation of clay minerals in tectonic shear zones Tschermaks Min. Petr. Mitt. 25 219242.CrossRefGoogle Scholar
Riedmüller, G. and Schwaighofer, B., 1977 Zur Tonmineralverteilung nachbruchgefährdeter Gesteinsbereiche im Untertagebau Verh. Geol. B. A. Wien 3 387392.Google Scholar
Shimamoto, T. and Logan, J. M., 1981 Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone Tectonophysics 75 243255.CrossRefGoogle Scholar
Sonderegger, U. C. (1985) Das Scherverhalten von Kaolinit, Mit und Montmorillonit: Mitt. Inst. Grundbau Bodenmech. ETH, Zürich 129, 165 pp.Google Scholar
Tollmann, A., 1959 Ostalpensynthese Vienna Deutlicke.Google Scholar
Wahlstrom, E. E., Robinson, C. S. and Nichols, T. C., 1968 Swelling of rocks in faults in the Robertson tunnel, Colorado Eng. Geol. Case Hist. 6 8389.Google Scholar
Whittig, L. D., Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E. and Clark, F. E., 1965 X-ray diffraction techniques for mineral identification and mineralogical composition Methods of Soil Analysis Madison, Wisconsin Amer. Soc. Agron. 671698.Google Scholar
Wu, F. T., 1978 Mineralogy and physical nature of clay gouge Pure Appl. Geophys. 116 655689.CrossRefGoogle Scholar
Wu, F. T., Blatter, L. and Roberson, H., 1975 Clay gouges in the San Andreas fault system and their possible implications Pure Appl. Geophys. 113 8796.CrossRefGoogle Scholar