Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T10:34:25.679Z Has data issue: false hasContentIssue false

Stoichiometric Reactions Describing Serpentinization of Anhydrous Primary Silicates: A Critical Appraisal, with Application to Aqueous Alteration of Chondrule Silicates in CM Carbonaceous Chondrites

Published online by Cambridge University Press:  01 January 2024

Michael A. Velbel*
Affiliation:
Department of Geological Sciences, Michigan State University, 206 Natural Science Building, 48824-1115, East Lansing, Michigan, USA
*
*E-mail address of corresponding author: velbel@msu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A number of chemical reactions (mass-action expressions) have been proposed to describe serpentinization of olivine in terrestrial serpentinites. Some have been applied to interpreting the formation of serpentine-group minerals in CM carbonaceous chondrites. The widely used olivine + pyroxene → serpentine (ol + px → srp) reaction is quantitatively inconsistent with observed ratios of olivine to pyroxene and olivine to serpentine in CM carbonaceous chondrites. The reaction of 5ol → 2srp is most consistent with constraints from textural observations at the scale of individual partial and complete pseudomorphs of serpentine after coarse olivine in CM chondrites, observed co-variations in modal abundances of reactant and product minerals in CM chondrites, and experimental geochemical kinetics. Furthermore, the 5ol → 2srp reaction provides insight into the mobility of solute species in the aqueous alteration environment of CM carbonaceous chondrites.

Type
Article
Copyright
Copyright © Clay Minerals Society 2014

References

Bach, W. Paulick, H. Garrido, C.J. Ildefonse, B. Meurer, W.P. and Humphris, S.E., 2006 Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274) Geophysical Research Letters 33 L13306.CrossRefGoogle Scholar
Barber, D.J., 1981 Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites Geochimica et Cosmochimica Acta 45 945970.CrossRefGoogle Scholar
Barber, D.J., 1985 Phyllosilicates and other layer-structured materials in stony meteorites Clay Minerals 20 415454.CrossRefGoogle Scholar
Bland, P.A. Cressey, G. and Menzies, O.N., 2004 Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy Meteoritics and Planetary Science 39 316.CrossRefGoogle Scholar
Bland, P.A. Jackson, M.D. Coker, R.F. Cohen, B.A. Webber, J.B.W. Lee, M.R. Duffy, C.M. Chater, R.J. Ardakani, M.G. McPhail, D.S. McComb, D.W. and Benedix, G.K., 2009 Why aqueous alteration in asteroids was isochemical: High porosity = high permeability Earth and Planetary Science Letters 287 559568.CrossRefGoogle Scholar
Boudier, F. Barronet, A. and Mainprice, D., 2010 Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite Journal of Petrology 51 495512.CrossRefGoogle Scholar
Brantley, S.L., 2005 Reaction kinetics of primary rockforming minerals under ambient conditions Surface and Ground Water, Weathering, and Soils 5 73117.Google Scholar
Brantley, S.L., Brantley, S.L. Kubicki, J.D. and White, A.F., 2008 Kinetics of mineral dissolution Kinetics of Water-Rock Interaction Berlin Springer 151210.CrossRefGoogle Scholar
Brearley, A.J., 2003 Nebular versus parent-body processing Meteorites, Comets, and Planets 1 247268.Google Scholar
Brearley, A.J., Lauretta, D.S. and McSween, H.Y. Jr., 2006 The action of water Meteorites and the Early Solar System II Arizona, USA University of Arizona Press 587624.CrossRefGoogle Scholar
Browning, L.B. McSween, H.Y. Jr. and Zolensky, M.E., 1996 Correlated alteration effects in CM carbonaceous chondrites Geochimica et Cosmochimica Acta 60 26212633.CrossRefGoogle Scholar
Browning, L.B. McSween, H.Y. Jr. and Zolensky, M.E., 2000 On the origin of rim textures surrounding anhydrous silicate grains in CM carbonaceous chondrites Meteoritics and Planetary Science 35 10151023.CrossRefGoogle Scholar
Bunch, T.E. and Chang, S., 1980 Carbonaceous chondrites — II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions Geochimica et Cosmochimica Acta 44 15431577.CrossRefGoogle Scholar
Buseck, P.R. and Hua, X., 1993 Matrices of carbonaceous chondrite meteorites Annual Reviews of Earth and Planetary Science 21 255305.CrossRefGoogle Scholar
Chizmadia, L.J. and Brearley, A.J., 2008 Mineralogy, aqueous alteration, and primitive textural characteristics of finegrained rims in the Y-791198 CM2 carbonaceous chondrite: TEM observations and comparison to ALHA81002 Geochimica et Cosmochimica Acta 72 602625.CrossRefGoogle Scholar
Clayton, R.N. and Mayeda, T.K., 1999 Oxygen isotope studies of carbonaceous chondrites Geochimica et Cosmochimica Acta 63 20892104.CrossRefGoogle Scholar
Cohen, B.A. and Coker, R.A., 2000 Modeling liquid water on CM meteorite parent bodies and implications for amino acid racemizations Icarus 145 369381.CrossRefGoogle Scholar
Coleman, R.G., 1971 Petrologic and geophysical nature of serpentinites Geological Society of America Bulletin 82 897918.CrossRefGoogle Scholar
Condie, K.C. and Madison, J.A., 1969 Compositional and volume changes accompanying progressive serpentinization of dunites from the Webster-Addie ultramafic body, North Carolina American Mineralogist 54 11731179.Google Scholar
Delvigne, J., 1998 Atlas of Micromorphology of Mineral Alteration and Weathering The Canadian Mineralogist, Special Publication 3 Ottawa, Ontario, Canada Mineralogical Association of Canada 495 pp..Google Scholar
Dodd, R.T., 1981 Meteorites: A Petrologic-Chemical Synthesis Cambridge, UK Cambridge University Press 368 pp..Google Scholar
DuFresne, E.R. and Anders, E., 1962 On the chemical evolution of the carbonaceous chondrites Geochimica et Cosmochimica Acta 26 10851114.CrossRefGoogle Scholar
Evans, B.W., 2008 Control of the products of serpentinization by the Fe2+Mg-1 exchange potential of olivine and orthopyroxene Journal of Petrology 49 18731887.CrossRefGoogle Scholar
Frost, B.R. and Beard, J.S., 2007 On silica activity and serpentinization Journal of Petrology 48 13511368.CrossRefGoogle Scholar
Fuchs, L.H. Olsen, E. and Jensen, K.J., 1973 Mineralogy, Mineral-Chemistry, and Composition of the Murchison (C2) Meteorite Smithsonian Contributions to Earth Science 10 39 pp..Google Scholar
Goldich, S.S., 1938 A study in rock weathering Journal of Geology 46 1758.CrossRefGoogle Scholar
Grady, M.M., 2000 Catalog of Meteorites fifth edition Cambridge, UK Cambridge University Press 689 pp..Google Scholar
Graham, R.P.D., 1917 Origin of massive serpentine and chrysotile-asbestos, Black Lake-Thetford area, Quebec Economic Geology 12 154202.CrossRefGoogle Scholar
Greshake, A., 1997 The primitive matrix components of the unique carbonaceous chondrites Acfer 094: A TEM study Geochimica et Cosmochimica Acta 61 437452.CrossRefGoogle ScholarPubMed
Guo, W. and Eiler, J.M., 2007 Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of CM chondrites Geochimica et Cosmochimica Acta 71 55655575.CrossRefGoogle Scholar
Hanowski, N.P. and Brearley, A.J., 2001 Aqueous alteration of chondrules in the CM carbonaceous chondrite, Allan Hills 81002: Implications for parent body alteration Geochimica et Cosmochimica Acta 65 495518.CrossRefGoogle Scholar
Hemley, J.J. Montoya, J.W. Christ, C.L. and Hostetler, P.B., 1977 Mineral equilibria in the MgO-SiO2-H2O system: I Talc-chrysotile-forsterite-brucite stability relations American Journal of Science 277 322351.CrossRefGoogle Scholar
Hostetler, P.B. Coleman, R.G. and Mumpton, F.A., 1966 Brucite in alpine serpentinites American Mineralogist 51 7598.Google Scholar
Howard, K.T. Benedix, G.K. Bland, P.A. and Cressey, G., 2009 Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration Geochimica et Cosmochimica Acta 73 45764589.CrossRefGoogle Scholar
Howard, K.T. Benedix, G.K. Bland, P.A. and Cressey, G., 2011 Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 2: Degree, nature and settings of aqueous alteration Geochimica et Cosmochimica Acta 75 27352751.CrossRefGoogle Scholar
Hutchison, R., 2004 Meteorites: A Petrologic, Chemical and Isotopic Synthesis Cambridge, UK Cambridge University Press 506 pp..Google Scholar
Kretz, R., 1983 Symbols for rock-forming minerals American Mineralogist 68 277279.Google Scholar
Lauretta, D.S. Hua, X. and Buseck, P.R., 2000 Mineralogy of fine-grained rims in the ALH 81002 CM chondrite Geochimica et Cosmochimica Acta 64 32633273.CrossRefGoogle Scholar
Lee, M.R. Lindgren, P. Sofe, M.R. Alexander, CMOD and Wang, J., 2012 Extended chronologies of aqueous alteration in the CM2 carbonaceous chondrites: Evidence from carbonates in Queen Alexandra Range 93005 Geochimica et Cosmochimica Acta 92 148169.CrossRefGoogle Scholar
Lofgren, G.E., 1989 Dynamic crystallization of chondrule melts of porphyritic olivine composition: Textures: Experimental and natural Geochimica et Cosmochimica Acta 53 461470.CrossRefGoogle Scholar
Lofgren, G.E., Hewins, R.H. Jones, R.H. and Scott, E.R.D., 1996 A dynamic crystallization model for chondrule melts Chondrules and the Protoplanetary Disk Cambridge, UK Cambridge University Press 187196.Google Scholar
Lofgren, G.E. and Lanier, A.B., 1990 Dynamic crystallization study of barred olivine chondrules Geochimica et Cosmochimica Acta 54 35373551.CrossRefGoogle Scholar
Lofgren, G.E. and Russell, W.J., 1986 Dynamic crystallization of chondrule melts of porphyritic and radial pyroxene composition Geochimica et Cosmochimica Acta 50 17151726.CrossRefGoogle Scholar
Mackinnon, I.D.R. and Zolensky, M.E., 1984 Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites Nature 309 240242.CrossRefGoogle Scholar
Martin, B. and Fyfe, W.S., 1970 Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization Chemical Geology 6 185202.CrossRefGoogle Scholar
McSween, H.Y. Jr., 1979 Are carbonaceous chondrites primitive or processed? A review Reviews of Geophysics and Space Physics 17 10591078.CrossRefGoogle Scholar
McSween, H.Y. Jr., 1979 Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix Geochimica et Cosmochimica Acta 43 17611770.CrossRefGoogle Scholar
McSween, H.Y. Jr., 1987 Aqueous alteration in carbonaceous chondrites: Mass balance constraints on matrix mineralogy Geochimica et Cosmochimica Acta 51 24692477.CrossRefGoogle Scholar
McSween, H.Y. Jr. and Richardson, S.M., 1977 The composi t ion of carbonaceous chondr i te matrix Geochimica et Cosmochimica Acta 41 11451161.CrossRefGoogle Scholar
Müller, W.F. Kurat, G. and Kracher, A., 1979 Chemical and crystallographic study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite Tschermaks Mineralogische und Petrographische Mitteilungen 26 293304.CrossRefGoogle Scholar
Nahon, D.B., 1991 Introduction to the Petrology of Soils and Chemical Weathering New York John Wiley and Sons, Inc. 313 pp..Google Scholar
Nakamura, T. Noguchi, T. Okazaki, R. Jogo, K. and Ohtsuka, K., 2008.Mineralogical and stable isotope signatures of El-Quss Abu Said CM2 carbonaceous chondrite: Pristine material from the outer asteroid belt Abstract, 71st Annual Meteoritical Society Meeting, #5124Google Scholar
O’Hanley, D.S., 1992 Solution to the volume problem in serpentinization Geology 20 705708.2.3.CO;2>CrossRefGoogle Scholar
O’Hanley, D.S., 1996 Serpentinites: Records of Tectonic and Petrological History New York Oxford University Press 277 pp..Google Scholar
Plümper, O. King, H.E. Vollmer, C. Ramasse, Q. Jung, H. and Austrheim, H., 2012 The legacy of crystal-plastic deformation in olivine: High-diffusivity pathways during serpentinization Contributions to Mineralogy and Petrology 163 701724.CrossRefGoogle Scholar
Price, J.R. Bryan-Ricketts, D.S. Anderson, D. and Velbel, M.A., 2013 Weathering of almandine garnet: Influence of secondary minerals on the rate-determining step, and implications for regolith-scale Al mobilization Clays and Clay Minerals 61 3456.CrossRefGoogle Scholar
Rosenberg, N.D. Browning, L. and Bourcier, W.L., 2001 Modeling aqueous alteration of CM carbonaceous chondrites Meteoritics and Planetary Science 36 239244.CrossRefGoogle Scholar
Rubin, A.E. Trigo-Rodríguez, J.M. Huber, H. and Wasson, J.T., 2007 Progressive alteration of CM carbonaceous chondrites Geochimica et Cosmochimica Acta 71 23612382.CrossRefGoogle Scholar
Schulte, M. Blake, D. Hoehler, T. and McCollom, T., 2006 Serpentinization and its implications for life on early Earth and Mars Astrobiology 6 364376.CrossRefGoogle ScholarPubMed
Smyth, J.R. and Bish, D.L., 1988 Crystal Structures and Cation Sites of the Rock-Forming Minerals Boston, USA Allen & Unwin 332 pp..Google Scholar
Thayer, T.P., 1966 Serpentinization considered as a constant-volume metasomatic process American Mineralogist 51 685710.Google Scholar
Tomeoka, K. McSween, H.Y. Jr. and Buseck, P.R., 1989 Mineralogical alteration of CM carbonaceous chondrites: A review Proceedings of the National Institute of Polar Research Symposium on Antarctic Meteorites 2 221234.Google Scholar
Velbel, M.A., 1993 Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: Implications for hydrologic control of differences in absolute rates Chemical Geology 105 8999.CrossRefGoogle Scholar
Velbel, M.A. and Barker, W.W., 2008 Pyroxene weathering to smectite: Conventional and low-voltage cryo-field emission scanning electron microscopy, Koua Bocca ultramafic complex, Ivory Coast Clays and Clay Minerals 56 111126.CrossRefGoogle Scholar
Velbel, M.A. and Palmer, E.E., 2011 Fine-grained serpentine in CM2 carbonaceous chondrites and its implications for the extent of aqueous alteration on the parent body: A review Clays and Clay Minerals 59 416432.CrossRefGoogle Scholar
Velbel, M.A. Donatelle, A.R. and Formolo, M.J., 2009 Reactant-product textures, volume relations, and implications for major-element mobility during natural weathering of hornblende, Tallulah Falls Formation, Georgia Blue Ridge, U.S.A American Journal of Science 309 661688.CrossRefGoogle Scholar
Velbel, M.A. Tonui, E.K. and Zolensky, M.E., 2012 Replacement of olivine by serpentine in the carbonaceous chondrite Nogoya (CM2) Geochimica et Cosmochimica Acta 87 117135.CrossRefGoogle Scholar
Viti, C. and Mellini, M., 1998 Mesh textures and bastites in the Elba retrograde serpentinites European Journal of Mineralogy 10 13411359.CrossRefGoogle Scholar
Wegner, W.W. and Ernst, W.G., 1983 Experimentally determined hydration and dehydration reaction rates in the system MgO-SiO2-H2O American Journal of Science 283-A 151180.Google Scholar
Wicks, F.J. and Whittaker, E.J.W., 1977 Serpentine textures and serpentinization The Canadian Mineralogist 15 459488.Google Scholar
Young, E.D. Ash, R.D. England, P. and Rumble, D III, 1999 Fluid flow in chondritic parent bodies: Deciphering the compositions of planetesimals Science 286 13311335.CrossRefGoogle ScholarPubMed
Young, E.D. Zhang, K.K. and Schubert, G., 2003 Conditions for pore water convection within carbonaceous chondrite parent bodies — implications for planetesimal size and heat production Earth and Planetary Science Letters 213 249259.CrossRefGoogle Scholar
Zega, T.J. and Buseck, P.R., 2003 Fine-grained-rim mineralogy of the Cold Bokkeveld CM chondrite Geochimica et Cosmochimica Acta 67 17111721.CrossRefGoogle Scholar
Zega, T.J. Garvie, L.A.J. Dodony, I. and Buseck, P.R., 2004 Serpentine nanotubes in the Mighei CM chondrite Earth and Planetary Science Letters 223 141146.CrossRefGoogle Scholar
Zega, T.J. Garvie, L.A.J. Dódony, I. Friedrich, H. Stroud, R.M. and Buseck, P.R., 2006 Polyhedral serpentine grains in CM chondrites Meteoritics and Planetary Science 41 681688.CrossRefGoogle Scholar
Zolensky, M. McSween, H.Y. Jr., Kerridge, J.F. and Shapley Matthews, M., 1988 Aqueous alteration Meteorites and the Early Solar System Arizona, USA The University of Arizona Press 114143.Google Scholar
Zolensky, M.E. Barrett, R. and Browning, L., 1993 Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites Geochimica et Cosmochimica Acta 57 31233148.CrossRefGoogle Scholar
Zolensky, M.E. Mittlefehldt, D.W. Lipschutz, M.E. Wang, M.-S. Clayton, R.N. Mayeda, T.K. Grady, M.M. Pillinger, C. and Barber, D., 1997 CM chondrites exhibit the complete petrologic range from type 2 to 1 Geochimica et Cosmochimica Acta 61 50995115.CrossRefGoogle Scholar