Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T02:35:50.852Z Has data issue: false hasContentIssue false

A Structural Model for Natural Siliceous Ferrihydrite

Published online by Cambridge University Press:  28 February 2024

R. L. Parfitt
Affiliation:
Landcare Research NZ, Private Bag 31902, Lower Hutt, New Zealand (forrnerly DSIR Land Resources)
S. J. Van der Gaast
Affiliation:
Netherlands Institute for Sea Research, P.O. Box 59, Texel, The Netherlands
C. W. Childs
Affiliation:
Landcare Research NZ, Private Bag 31902, Lower Hutt, New Zealand (forrnerly DSIR Land Resources)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray diffraction of four natural samples of ferrihydrite indicates the presence of crystalline domains within the primary particles. The average diameter of the primary particles (determined from low-angle powder patterns) decreases from 4.1 nm to 2.5 nm as the domain size in the xy-plane (determined by applying the Scherrer equation to the broad [110] XRD peak at 0.26–0.27 nm) decreases from 1.0 nm to 0.77 nm. The Si content (measured by acid-oxalate extraction) increases from 4.1% to 6.1% as both the domain and particle sizes decrease; other factors, however, are likely to be important in influencing particle size. For one sample of ferrihydrite, the smallest possible domain (i.e., c = 0.94 nm in the z-direction) contains 36 O atoms and three Si atoms. A model for ferrihydrite is suggested in which silicate bonds to, and bridges, the surfaces of the domains. The model can account for several aspects of the behavior of siliceous ferrihydrites.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Alvarez, R. and Sparks, D. L., 1985 Polymerization of silicate anions in solutions at low concentrations Nature 318 649651 10.1038/318649a0.CrossRefGoogle Scholar
Anderson, P. R. and Benjamin, M. M., 1985 Effects of silicon on the crystallization and adsorption properties of ferric oxides Environ. Sci. Technol. 19 10481053 10.1021/es00141a004.CrossRefGoogle ScholarPubMed
Barrow, N. J. and Bowden, J. W., 1987 A comparison of models for describing the adsorption of anions on a variable charge mineral surface J. Colloid Interface Sci. 119 236250 10.1016/0021-9797(87)90263-3.CrossRefGoogle Scholar
Brindley, G. W., Brindley, G. W. and Brown, G., 1980 Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 125195.CrossRefGoogle Scholar
Carlson, L. and Schwertmann, U., 1981 Natural ferrihydrites in surface deposits from Finland and their association with silica Geochim. Cosmochim. Acta 45 421429 10.1016/0016-7037(81)90250-7.CrossRefGoogle Scholar
Childs, C. W., 1992 Ferrihydrite: A review of structure, properties and occurrence in relation to soils Z. Pflanzenernähr. Bodenk. 155 441448 10.1002/jpln.19921550515.CrossRefGoogle Scholar
Childs, C. W., Downes, C. J. and Wells, N., 1982 Hydrous iron oxide minerals with short-range order deposited in a spring/stream system, Tongariro National Park, New Zealand Aust. J. Soil Res. 20 119129 10.1071/SR9820119.CrossRefGoogle Scholar
Childs, C. W., Matsue, N. and Yoshinaga, N., 1990 Ferrihydrite deposits in paddy races, Aso-Dani Clay Sci. 8 915.Google Scholar
Childs, C. W., Wells, N. and Downes, C. J., 1986 Kokowai Springs, Mount Egmont, New Zealand: Chemistry and mineralogy of the ochre (ferrihydrite) deposit and analysis of the waters J. Roy. Soc. N.Z. 16 8599 10.1080/03036758.1986.10426958.CrossRefGoogle Scholar
Compton, A. H. and Allison, S. K., 1960 X-rays in Theory and Experiment New York Van Norstrand.Google Scholar
Eggleton, R. A. and Fitzpatrick, R. W., 1988 New data and a revised structural model for ferrihydrite Clays & Clay Minerals 38 111124 10.1346/CCMN.1988.0360203.CrossRefGoogle Scholar
Fleischer, M., Chao, G. Y. and Kato, A., 1975 New mineral names Am. Mineral. 60 485486.Google Scholar
Henmi, T., Wells, N., Childs, C. W. and Parfitt, R. L., 1980 Poorly-ordered iron-rich precipitates from springs and streams on andesitic volcanoes Geochim. Cosmochim. Acta 44 365372 10.1016/0016-7037(80)90144-1.CrossRefGoogle Scholar
Karim, Z., 1984 Characteristics of ferrihydrites formed by oxidation of FeCl2 solutions containing different amounts of silica Clays & Clay Minerals 32 181184 10.1346/CCMN.1984.0320304.CrossRefGoogle Scholar
Klug, H. P. and Alexander, L. E., 1974 X-ray Diffraction Procedures New York Wiley.Google Scholar
McEwan, D M C Ruiz, A. A., Brown, G. and Brown, G., 1961 Interstratified clay minerals The X-ray Identification and Crystal Structure of Clay Minerals London Mineralogical Society 393445.Google Scholar
Manceau, A., Combes, J. M. and Calas, G., 1990 New data and a revised structural model for ferrihydrite: Comment Clays & Clay Minerals 38 331334 10.1346/CCMN.1990.0380314.CrossRefGoogle Scholar
Parfitt, R. L., 1978 Anion adsorption by soils and soil materials Adv. Agron. 30 150.Google Scholar
Parfitt, R. L., 1989 Phosphate reactions with natural allophane, ferrihydrite and goethite J. Soil Sci. 40 359369 10.1111/j.1365-2389.1989.tb01280.x.CrossRefGoogle Scholar
Parfitt, R. L. and Childs, C. W., 1988 Estimation of forms of Fe and Al: A review, and analysis of contrasting soils by dissolution and Moessbauer spectroscopy Aust. J. Soil Res. 26 121144 10.1071/SR9880121.CrossRefGoogle Scholar
Quin, T. G., Long, G. J., Benson, C. G., Mann, S. and Williams, R. J. P., 1988 Influence of silicon and phosphorus on structural and magnetic properties of synthetic goethite and related oxides Clays & Clay Minerals 36 165175 10.1346/CCMN.1988.0360211.CrossRefGoogle Scholar
Russell, J. D., 1979 Infrared spectroscopy of ferrihydrite: Evidence for the presence of structural hydroxyl groups Clay Miner. 14 109113 10.1180/claymin.1979.014.2.03.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J. W., Goodman, B. A. and Schwertmann, U., 1988 Occurrence and formation of iron oxides in various pedoenvironments Iron in Soils and Clay Minerals Dordrecht Reidel 267308 10.1007/978-94-009-4007-9_11.CrossRefGoogle Scholar
Sigg, L. and Stumm, W., 1980 The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface Colloids and Surfaces 2 101107 10.1016/0166-6622(81)80001-7.CrossRefGoogle Scholar
Smith, K. L. and Eggleton, R. A., 1983 Botryoidal goethite: A transmission electron microscope study Clays & Clay Minerals 31 392396 10.1346/CCMN.1983.0310509.CrossRefGoogle Scholar
Towe, K. M. and Bradley, W. F., 1967 Mineralogical constitution of colloidal “hydrous Ferric oxides” J. Colloid Interface Sci. 24 383392 10.1016/0021-9797(67)90266-4.CrossRefGoogle Scholar
Van der Gaast, S. J. and Vaars, A. J., 1981 A method to eliminate the background in X-ray diffraction patterns of oriented clay mineral samples Clay Miner. 16 383393 10.1180/claymin.1981.016.4.07.CrossRefGoogle Scholar
Van der Gaast, S. J., Mizota, C. and Jansen, J. H. F., 1986 Curved smectite in soils from volcanic ash in Kenya and Tanzania: A low-angle X-ray powder diffraction study Clays & Clay Minerals 34 665671 10.1346/CCMN.1986.0340607.CrossRefGoogle Scholar
Van der Gaast, S. J., Wada, K., Wada, S. I. and Kakuto, Y., 1985 Small-angle X-ray powder diffraction, morphology, and structure of allophane and imogolite Clays & Clay Minerals 33 237243 10.1346/CCMN.1985.0330310.CrossRefGoogle Scholar
Vempati, R. K. and Loeppert, R. H., 1989 Influence of structural and adsorbed Si on the transformation of synthetic ferrihydrite Clays & Clay Minerals 37 273279 10.1346/CCMN.1989.0370312.CrossRefGoogle Scholar
Wilson, A. J. C., 1963 Mathematical Theory of X-ray Powder Diffraction. Eindhoven Philips Technical Library.Google Scholar