Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T23:06:28.044Z Has data issue: false hasContentIssue false

The Structure and Thermochemistry of Three Fe-Mg Chlorites

Published online by Cambridge University Press:  01 January 2024

Stephen Aja*
Affiliation:
Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York (CUNY), 2900 Bedford Avenue, Brooklyn, NY 11210-2889, USA
Oladipo Omotoso
Affiliation:
Suncor Energy Inc., 150 6th Avenue SW, Calgary, Alberta T23 3P3, Canada
Christian Bertoldi
Affiliation:
Department of Materials Research and Physics, Mineralogy Division, University of Salzburg, Hellbrunner Str. 34, A-5020, Salzburg, Austria
Edgar Dachs
Affiliation:
Department of Materials Research and Physics, Mineralogy Division, University of Salzburg, Hellbrunner Str. 34, A-5020, Salzburg, Austria
Artur Benisek
Affiliation:
Department of Materials Research and Physics, Mineralogy Division, University of Salzburg, Hellbrunner Str. 34, A-5020, Salzburg, Austria
*
*E-mail address of corresponding author: suaja@brooklyn.cuny.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Chlorites are petrogenetically important minerals, exercise controls on petroleum reservoir qualities, are common in alteration zones during hydrothermal ore mineralization, and may form during carbon sequestration in sedimentary formations. Chlorite thermochemistry and structure have been investigated, in the present study, to facilitate an improved understanding of chlorite equilibria.

Three natural IIb chlorites were studied by powder diffraction and calorimetric methods (low-temperature relaxation calorimetry using a Physical Properties Measurement System [PPMS] and differential scanning calorimetry [DSC]). The samples include a low-Fe clinochlore [Mg-Chl] and two Fe-rich chlorites from Windsor [Fe-Chl(W)] and Michigan [Fe-Chl(M)]. The structure of each chlorite was refined in the ideal C2/m symmetry using Rietveld techniques. Lattice parameters for the Windsor chlorite are a = 5.3786(6) Å, b = 9.3176(9) Å, c = 14.2187(6) Å, β = 96.98(10)°. The Michigan chlorite returned a = 5.3897(3) Å, b = 9.3300(3) Å, c = 14.2376(2) Å, β = 97.043(5)° whereas the low-Fe clinochlore yielded a = 5.3301(3) Å, b = 9.2231(8) Å, c = 14.2912(4) Å, β= 97.03(10)°.

Heat capacities (Cp) for the three natural chlorites were measured using both PPMS (2–303 K) and DSC (282–564 K). Employing a combination of Debye-Einstein-Schottky functions, the lattice dynamics component of the Cp at lower temperature was evaluated allowing a separation of the magnetic spin ordering component of Cp from the lattice vibrational part. For Mg-Chl, Fe-Chl(W), and Fe-Chl(M), the polynomials defining the temperature dependencies of the heat capacities between 280 and 570 K are:

Cp = 1185.44(±68.93) − 9753.21(±186.85)T−0.5 − 1.9094(±1.0288)·107T−2 + 3.3013(±1.5363)·109T−3

Cp = 1006.06(±48.46) − 4134.83 (±1515.16)T−0.5 − 40.0949(±6.9413)·106T−2 + 5.9386(±1.0287)·109T−3

and

Cp = 1268.60(±67.16) − 11983.09(±2107.07)T−0.5 − 7.6037(±9.6417)·106T−2 + 1.5398(±1.4187)·109T−3, respectively.

Standard state molar thermodynamic functions, CP, ST, (HTH0)/T, and φ were evaluated for the samples. S298.15 for Fe-Chl(W), Mg-Chl, and Fe-Chl(M) were found to be 499.14 ± 3.40, 437.81 ± 3.00 and 515.06 ± 3.60 J mol-1K-1, respectively, whereas S° for Fe-Chl(W) and Mg-Chl were determined to be 578.24 ± 3.76 and 503.21 ± 3.60 J mol−1K−1, −1

Type
Article
Copyright
Copyright © The Clay Minerals Society 2015

References

Aja, S.U., 2002 The stability of Fe-Mg chlorites in hydrothermal solutions: II. Thermodynamic properties Clays and Clay Minerals 50 591600.CrossRefGoogle Scholar
Aja, S.U. and Dyar, M.D., 2002 The stability of Fe-Mg chlorites in hydrothermal solutions I. Results of experimental investigations Applied Geochemistry 17 12191239.CrossRefGoogle Scholar
Aja, S.U. and Small, J.S., 1999 The solubility of a low-Fe clinochlore between 25 and 175°C and Pv = PH2O European Journal of Mineralogy 11 829842.CrossRefGoogle Scholar
Anderson, G.M. and Crerar, D.A., 1993 Thermodynamics in Geochemistry: The Equilibrium Model Oxford, UK Oxford University Press.CrossRefGoogle Scholar
Armstrong, J.T., Heinrich, K.F.J., 1982 New ZAF and a-factor correction procedures for the quantitative analysis of individual microparticles Microbeam Analysis San Francisco, California, USA San Francisco Press.Google Scholar
Armstrong, J.T., 1995 CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analyses of thick polished materials, thin films and particles Microbeam Analyses 4 177200.Google Scholar
Bailey, S.W., 1980 Summary of recommendations of AIPEA nomenclature committee on clay minerals American Mineralogist 65 17.Google Scholar
Ballet, O. Coey, J.M.D. and Burke, K.J., 1985 Magnetic properties of sheet silicates: 2:1:1 layer minerals Physics and Chemistry of Minerals 12 370378.CrossRefGoogle Scholar
Behrens, H. and Stuke, A., 2003 Quantification of H2O contents in silicate glasses using IR spectroscopy — a calibration based on hydrous glasses analyzed by Karl- Fischer titration Glass Science and Technology 76 176189.Google Scholar
Benisek, A. and Dachs, E., 2011 On the nature of the excess heat capacity of mixing Physics and Chemistry of Minerals 38 185191.CrossRefGoogle Scholar
Benisek, A. and Dachs, E., 2012 A relationship to estimate the excess entropy of mixing: Application in silicate solid solutions and binary alloys Journal of Alloys and Compounds 527 127131.CrossRefGoogle ScholarPubMed
Benisek, A. Dachs, E. and Kroll, H., 2009 Excess heat capacity and entropy of mixing in high structural state plagioclase American Mineralogist 94 11531161.CrossRefGoogle Scholar
Berger, A. Gier, S. and Krois, P., 2009 Porosity — preserving chlorite cements in shallow-marine volcaniclastic sandstones: evidence from Cretaceous sandstones of the Sawan gas field, Pakistan American Association of Petroleum Geology Bulletin 93 595615.CrossRefGoogle Scholar
Berman, R.G., 1988 Internally consistent thermodynamic data for stoichiometric minerals in the system Na2O-K2O-CaOMgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 Journal of Petrology 29 445522.CrossRefGoogle Scholar
Berman, R.G. and Brown, T.H., 1985 Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation Contributions to Mineralogy and Petrology 89 168183.CrossRefGoogle Scholar
Bertoldi, C. Benisek, A. Čemic, L. and Dachs, E., 2001 The heat capacity of two natural chlorite group minerals derived from differential scanning calorimetry Physics and Chemistry of Minerals 28 332336.CrossRefGoogle Scholar
Bertoldi, C. Dachs, E. and Appel, P., 2007 Heat pulse calorimetry on natural chlorite-group minerals American Mineralogist 92 553559.CrossRefGoogle Scholar
Black, J.R. and Haese, R.R., 2014 Chlorite dissolution rates under CO2 saturated conditions from 50 to 120°C and 120 to 200 bar CO2 Geochimica et Cosmochimica Acta 125 225240.CrossRefGoogle Scholar
Boerio-Goates, J. Stevens, R. Hom, B.K. Woodfield, B.F. Piccione, P.M. Davis, M.E. and Navrotsky, A., 2002 Heat capacities, third-law entropies and thermodynamic functions of SiO2 molecular sieves from T = 0 K to 400 K Journal of Chemical Thermodynamics 34 205227.CrossRefGoogle Scholar
Brandt, F. Bosbach, D. Krawczyk-Bärsch, E. Arnold, T. and Bernhard, G., 2003 Chlorite dissolution in the acid pHrange: a combined microscopic and macroscopic approach Geochimica et Cosmochimica Acta 67 14511461.CrossRefGoogle Scholar
Brown, B.E. and Bailey, S.W., 1962 Chlorite polytypism: I. Regular and semi-random one-layer structure American Mineralogist 47 819850.Google Scholar
Dachs, E. and Benisek, A., 2011 A sample-saving method for heat capacity measurements on powders using relaxation calorimetry Cryogenics 51 460464.CrossRefGoogle ScholarPubMed
Dachs, E. and Bertoldi, C., 2005 Precision and accuracy of the heat-pulse calorimetric technique: Low-temperature heat capacities of milligram-sized synthetic mineral samples European Journal of Mineralogy 17 251259.CrossRefGoogle Scholar
Dachs, E. Harlov, D. and Benisek, A., 2010 Excess heat capacity and entropy of mixing along the chlorapatite—fluorapatite binary join Physics and Chemistry of Minerals 37 112.CrossRefGoogle Scholar
Dachs, E. Geiger, C.A. Benisek, A. and Grevel, K.D., 2012 Thermodynamic properties of grossular garnet: Heat capacity behavior, standard entropy and selected petrologic applications American Mineralogist 97 12991313.CrossRefGoogle Scholar
Dachs, E. Geiger, C.A. and Benisek, A., 2012 Almandine: Lattice and non-lattice heat capacity behavior and standard thermodynamic properties American Mineralogist 97 11711182.CrossRefGoogle Scholar
De Haller, A. and Fontboté, L., 2009 The Raúl-Condenstable iron oxide copper-gold deposit, Central Coast of Peru: Ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints Economic Geology 104 365384.CrossRefGoogle Scholar
Foster, M.D., 1962 Interpretation of the composition and classification of chlorites Geological Survey Profesional Paper 414-A 133.Google Scholar
Gailhanou, H. Rogez, J. van Miltenburg, J.C. van Genderen, A.C.G. Greńche, J.M. Gilles, C. Jalabert, D. Michau, N. Gaucher, E.C. and Blanc, P., 2009 Thermodynamic properties of chlorite CCa-2. Heat capacities, heat contents and entropies Geochimica et Cosmochimica Acta 73 47384749.CrossRefGoogle Scholar
Gopal, E.S.R., 1966 Specific Heats at Low Temperatures London Heywood Books.CrossRefGoogle Scholar
Gould, K. Pe-piper, G. and Piper, D.J.W., 2010 Relationship of diagenetic chlorite rims to depositional facies in lower Cretaceous reservoir sandstones of the Scotian Basin Sedimentology 57 587610.CrossRefGoogle Scholar
Grevel, K.D. Kahl, W.A. Majzlan, J. Navrotsky, A. Lathe, C. and Flockenberg, T., 2005 Thermodynamic properties of magnesium chloritoid European Journal of Mineralogy 17 587598.CrossRefGoogle Scholar
Guilbert, J.M. Park, C.F. Jr, 1986 The Geology of Ore Deposits New York W. H. Freeman.Google Scholar
Haszeldine, R.S. Quinn, O. England, G. Wilkinson, M. Shipton, Z.K. Evans, J.P. Heath, J. Crossey, L. Ballentine, C.J. and Graham, C.M., 2005 Natural geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective Oil & Gas Science and Technology — Revue d’IFP Energies Nouvelle 60 3349.CrossRefGoogle Scholar
Hemingway, B.S. Kittrick, J.A. Grew, E.S. Nelen, J.A. and London, D., 1984 The heat capacity of osumilite from 298.15 to 1000 K, the thermodynamic properties of natural chlorites to 500 K, and the thermodynamic properties of petalite to 1800 K American Mineralogist 69 701710.Google Scholar
Henderson, C.E. Essene, E.J. Anovitz, L.M. Westrum, E.F. Hemingway, B.S. and Bowman, J.R., 1983 Thermodynamic and phase equilibria of clinochlore, (Mg5Al)[Si3AlO10](OH)8 Transactions of the American Geophysical Union 64 466.Google Scholar
Holland, T.J.B. and Powell, R., 1998 An internally consistent thermodynamic dataset for phases of petrological interest Journal of Metamorphic Geology 16 309343.CrossRefGoogle Scholar
Holland, T.J.B. and Powell, R., 2011 An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids Journal of Metamorphic Geology 29 333383.CrossRefGoogle Scholar
Holland, T.J.B. Baker, J. and Powell, R., 1998 Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O European Journal of Mineralogy 10 395406.CrossRefGoogle Scholar
Hutcheon, I., Spencer, R.J. and Chou, I.-M., 1990 Clay—carbonate reactions in the Venture area, Scotian Shelf, Nova Scotia, Canada Fluid-Mineral Interactions: A tribute to H. P. Eugster St. Louis, Missouri, USA Geochemical Society.Google Scholar
Jarosewich, E. Nelen, J.A. and Norberg, J.A., 1980 Reference samples for electron microprobe analysis Geostandards Newsletters 4 4347.CrossRefGoogle Scholar
Joswig, W. and Fuess, H., 1990 Refinement of a one-layer triclinic chlorite Clays and Clay Minerals 38 216218.CrossRefGoogle Scholar
Kittrick, J.A., 1982 Solubility of two high-Mg and two high-Fe chlorites using multiple equilibria Clays and Clay Minerals 30 167179.CrossRefGoogle Scholar
Lai, S.K. and Yih, T.S., 1986 Excess entropy and resistivity of Mg-based alloys Physica 141B 191198.Google Scholar
Lanari, P. Wagner, T. and Vidal, O., 2014 A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: applications to P-T sections and geothermometry Contributions to Mineralogy and Petrology 167 968976.CrossRefGoogle Scholar
Lougear, A. Grodzicki, M. Bertoldi, C. Trautwein, A.X. Steiner, K. and Amthauer, G., 2000 Mössbauer and molecular orbital study of chlorites Physics and Chemistry of Minerals 27 258269.CrossRefGoogle Scholar
Lowson, R.T. Comarmond, M.-C.J. Rajaratnam, G. and Brown, P., 2005 The kinetics of dissolution of chlorite as a function of pH and at 25°C Geochimica et Cosmochimica Acta 69 16871699.CrossRefGoogle Scholar
Lowson, R.T. Brown, P.L. Comarmond, M.-C.J. and Rajaratnam, G., 2007 The kinetics of chlorite dissolution Geochimica et Cosmochimica Acta 71 14311447.CrossRefGoogle Scholar
Lu, J. Kharaka, Y.K. Thorsden, J.J. Horita, J. Karamalidis, A. Grifith, C. Hakala, J.A. Ambats, G. Cole, D.R. Phelps, T.J. Manning, M.A. Cook, P.J. and Hovorka, S.D., 2012 CO2-rock-brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, USA Chemical Geology 291 269277.CrossRefGoogle Scholar
Post, J.L. and Plummer, C.C., 1972 The chlorite series of Flagstaff Hill Area, California: A preliminary investigation Clays and Clay Minerals 20 271283.CrossRefGoogle Scholar
Robie, R.A. Hemingway, B.S. and Takei, H., 1982 Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K American Mineralogist 67 470482.Google Scholar
Rose, A.W. Burt, D.M., Barnes, H.L., 1979 Hydrothermal alteration Geochemistry of Hydrothermal Ore Deposits New Jersey, USA Wiley-Interscience.Google Scholar
Rule, A.C. and Bailey, S.W., 1987 Refinement of the crystal structure of a monoclinic ferroan clinochlore Clays and Clay Minerals 35 129138.CrossRefGoogle Scholar
Saccocia, P.J. Seyfried, W.E. Jr, 1993 A resolution of discrepant thermodynamic properties for chamosite retrieved from experimental and empirical techniques American Mineralogist 78 607611.Google Scholar
Smith, J.T. and Ehrenberg, S.N., 1989 Correlation of carbon dioxide abundance with temperature in clastic hydrocarbon reservoirs Marine and Petroleum Geology 6 129135.CrossRefGoogle Scholar
Smith, M.M. Wolery, T.J. and Carroll, S.A., 2013 Kinetics of chlorite dissolution at elevated temperatures and CO2 conditions Chemical Geology 347 18.CrossRefGoogle Scholar
Townsend, M.G. Longworth, G. and Kodama, H., 1986 Magnetic interaction at low temperature in chlorite and its products of oxidation: A Mössbauer investigation The Canadian Mineralogist 24 105115.Google Scholar
Ulbrich, H.H. and Waldbaum, D.R., 1976 Structural and other contributions to the third-law entropies of silicates Geochimica et Cosmochimica Acta 40 124.CrossRefGoogle Scholar
Vidal, O. Parra, T. and Vieillard, P., 2005 Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation American Mineralogist 90 347358.CrossRefGoogle Scholar
Welch, M.D. Barris, J. and Klinowski, J., 1995 A multinuclear NMR study of clinochlore American Mineralogist 80 441447.CrossRefGoogle Scholar
Zazzi, A. Hirsch, T.K. Leonova, E. Kaikkonen, A. Grins, J. Annersten, H. and Eded, M., 2006 Structural investigations of natural and synthetic chlorite minerals by X-ray diffraction, Mössbauer spectroscopy and solid-state nuclear magnetic resonance Clays and Clay Minerals 54 252265.CrossRefGoogle Scholar