Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T02:26:30.054Z Has data issue: false hasContentIssue false

Synthesis of Al-PILC Assisted by Ultrasound: Reducing the Intercalation Time and the Amount of Synthesis Water

Published online by Cambridge University Press:  01 January 2024

M. Josefina Pérez-Zurita*
Affiliation:
Centro de Catálisis, Petróleo y Petroquímica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 40646, Caracas, Venezuela
Gabriela J. Pérez-Quintana
Affiliation:
Centro de Catálisis, Petróleo y Petroquímica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 40646, Caracas, Venezuela
Alfonso J. Hasblady
Affiliation:
Centro de Catálisis, Petróleo y Petroquímica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 40646, Caracas, Venezuela
Adriana Maldonado
Affiliation:
Centro de Catálisis, Petróleo y Petroquímica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 40646, Caracas, Venezuela
Caribay Urbina de Navarro
Affiliation:
Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 47102, Caracas, Venezuela
Ander De Abrisqueta
Affiliation:
Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 47102, Caracas, Venezuela
Carlos E. Scott
Affiliation:
Centro de Catálisis, Petróleo y Petroquímica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 40646, Caracas, Venezuela
*
*E-mail address of corresponding author: marperez@ciens.ucv.ve
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Of all the known pillared layered clays (PILC), Al-PILC is the most studied. In spite of that, its use on a commercial scale is not yet possible due to the large amount of water required for its synthesis. The aim of the present work was to take advantage of the beneficial effects of ultrasound radiation for reducing intercalation time, and to optimize the synthesis parameters in order to find a viable industrial means of preparing Al-PILC.

A comprehensive study of the effect of ultrasonic radiation on the parameters which have a direct effect on the amount of water used in the synthesis was conducted, specifically on the effects of: (1) mmol of Al/g of clay ratio (R) by decreasing the volume of A1 solution and keeping the amount of clay constant, (2) the concentration of clay in the initial suspension (or not suspending the clay at all), and (3) the concentration of the A1 precursor solution. The use of ultrasonic radiation produced the expected reduction in exchange time which was attributed to a decrease of the clay-particle size. This decrease of particle size gave rise to an improvement in the diffusion of the A1 precursor towards the core of the clay grain leading to solids with increased surface areas, basal spacing and X-ray diffraction peak definition. By optimizing the synthesis parameters directly involved in the consumption of water, it was possible to decrease the amount used by >60%.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Chatakondu, K G Thompson, M.E. and Suslick, K.S., (1987) The enhancement of intercalation reactions hy ultrasound Journal of the Chemical Society. Chemical Communications 900901.CrossRefGoogle Scholar
De Bock, M. Nijs, H. Cool, P. and Vansant, E.F., (1999) Evaluation of the microporosity of aluminum pillared montmorillonite: optimization of the exchange process Journal of Porous Materials 6 323333 10.1023/A:1009649127144.CrossRefGoogle Scholar
Fetter, G. Fieredia, G. Velazquez, L.A. Mauhert, A.M. and Bosch, P., (1997) Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions Applied Catalysis 162 4145 10.1016/S0926-860X(97)00081-1.CrossRefGoogle Scholar
Figueras, F., (1988) Pillared clays as catalysts Catalysis Review Science and Engineering 30 457499 10.1080/01614948808080811.CrossRefGoogle Scholar
Ge, Z. Li, D. and Pinnavaia, T.J., (1994) Preparation of alumina-pillared montmorillonites with high thermal stability, regular microporosity and Lewis/Brönsted acidity Microporous Materials 3 165175 10.1016/0927-6513(94)00020-4.CrossRefGoogle Scholar
Gil, A. Vicente, M.A. and Gandía, L., (2000) Main factors controlling the texture of zirconia and alumina pillared clays Microporous & Mesoporous Materials 34 115125 10.1016/S1387-1811(99)00166-3.CrossRefGoogle Scholar
Gil, A. Gandía, L.M. and Vicente, M.A., (2000) Recent advances in the synthesis and catalytic applications of pillared clays Catalysis Review Science and Engineering 42 145212 10.1081/CR-100100261.CrossRefGoogle Scholar
Hu, C.h. Xu, Z. Qinlin, H. and Wang, E., (1997) The rapid synthesis of the heteropolyoxometalate-pillared layered double hydroxide Zn2Al(OH)6SiW11O39Co(H2O))1/6.H2O hy the action of ultrasound Transition Metals Chemistry 22 197199 10.1023/A:1018439802661.CrossRefGoogle Scholar
Kaloidas, V. Koufopanos, C.A. Gangas, N.H. and Papayannakos, N.G., (1995) Scale-up studies for the preparation of pillared layered clays at 1 kg per hatch level Microporous Materials 5 97106 10.1016/0927-6513(95)00047-D.CrossRefGoogle Scholar
Katdare, S.P. Ramaswamy, V. and Ramaswamy, A.V., (1997) Intercalation of Al oligomers into Ca2+-montmorillonite using ultrasonics Journal of Materials Chemistry 7 21972199 10.1039/a705001a.CrossRefGoogle Scholar
Katdare, S.P. Ramaswamy, V. and Ramaswamy, A.V., (1999) Ultrasonication: a competitive method of intercalation for the preparation of alumina pillared montmorillonite catalyst Catalysis Today 49 313320 10.1016/S0920-5861(98)00438-6.CrossRefGoogle Scholar
Katdare, S.P. Ramaswamy, V. and Ramaswamy, A.V., (2000) Factors affecting the preparation of alumina pillared montmorillonite employing ultrasonics Microporous & Mesoporous Materials 37 329336 10.1016/S1387-1811(99)00275-9.CrossRefGoogle Scholar
Kooli, F. Jones, W. Rives, V. and Ulibarri, M.A., (1997) An alternative route to polyoxometalate-exchanged layered double hydroxides: the use of ultrasound Journal of Material Science Letters 16 2729 10.1023/A:1018580229611.CrossRefGoogle Scholar
Lindley, J., (1992) Sonochemical effects on synthesis involving solid and supported catalysts Ultrasonics 30 163167 10.1016/0041-624X(92)90067-V.CrossRefGoogle Scholar
Molina, R. Vieira-Coelho, A. and Poncelet, G., (1992) Hydroxy-Al pillaring of concentrated clay suspensions Clays and Clay Minerals 40 480482 10.1346/CCMN.1992.0400413.CrossRefGoogle Scholar
Moreno, S. Gutierrez, E. Alvarez, A. Papayannakos, N.G. and Poncelet, G., (1997) Al-pillared clays: from lab synthesis to pilot scale production. Characterization and catalytic activity Applied Catalysis 165 103114 10.1016/S0926-860X(97)00194-4.CrossRefGoogle Scholar
Moronta, A. Taylor, S. and Breen, C., (2002) Adsorption of olefin on aluminum- and aluminum/tetramethyl ammonium-exchanged bentonites Clays and Clay Minerals 50 265271 10.1346/000986002760832865.CrossRefGoogle Scholar
Pérez Zurita, M.J. Vitale, G. Goldwasser, M.R. Rojas, D. and Garcia, J.J., (1996) Fe-pillared clays: a combination of zeolite shape selectivity and iron activity in the CO hydrogenation reaction Journal of Molecular Catalysis A: Chemical 107 175183 10.1016/1381-1169(95)00218-9.CrossRefGoogle Scholar
Pérez Zurita, M.J. Hernández, Y.C. Sazo, V. Arias, D. Bolívar, C. Scott, C. and Ramírez, M.M., (1999) Arcillas pilareadas en adsorción y catálisis Revista de la Sociedad Venezolana de Catalisis 13 4045.Google Scholar
Pérez Zurita, M.J. Pérez Quintana, G. Maldonado, A. Biomorgi, J.G. and Scott, C.E., (2001) Synthesis of Al-PILC assisted by ultrasound: Lowering intercalation time and amount of water Proceedings of the Fourth Tokyo Conference on Advanced Catalytic Science and Technology, 2001 278279.Google Scholar
Pérez-Zurita, M.J. Pérez-Quintana, G. Biomorgi, J.G. and Scott, C.E., (2003) Ru-Al ultrasound pillared clays as hydrodesulphurization catalysts American Chemical Society Preprints, Fuel Chemistry Division 48 9091.Google Scholar
Ramaswamy, V. Krishnan, M.S. and Ramaswamy, A.V., (2002) Immobilization and characterization of copper chlorophthalocyanine on alumina-pillared montmorillonite Journal of Molecular Catalysis A: Chemical 181 8189 10.1016/S1381-1169(01)00348-X.CrossRefGoogle Scholar
Salermo, P. Asenjo, M.B. and Mendioroz, S., (2001) Influence of preparation method on thermal stability and acidity of Al_PILCs Thermochimica Acta 379 101109 10.1016/S0040-6031(01)00608-6.CrossRefGoogle Scholar
Salermo, P. Asenjo, M.B. and Mendioroz, S., (2001) Molybdenum species identification on pillared clays by temperature-programmed reduction Thermochimica Acta 379 111115 10.1016/S0040-6031(01)00609-8.CrossRefGoogle Scholar
Sanchez, A. and Montes, M., (1998) Influence of the preparation parameters (particle size and aluminum concentration) on the textural properties of Al—pillared clays for a scale-up process Microporous & Mesoporous Materials 21 117125 10.1016/S1387-1811(97)00057-7.CrossRefGoogle Scholar
Schoonheydt, R.A. and Leeman, H., (1992) Pillaring of saponite in concentrated medium Clay Minerals 27 249252 10.1180/claymin.1992.027.2.09.CrossRefGoogle Scholar
Sivakumar, S. Damodaran, A.D. and Warrier, K.G.K., (1995) Delamination through sonication of a hydroxy metal oxide sol intercalation of montmorillonite Ceramics International 21 8588 10.1016/0272-8842(95)95876-J.CrossRefGoogle Scholar
Storaro, L. Lenarda, M. Ganzerla, R. and Rinaldi, R., (1996) Preparation of hydroxy Al and Al/Fe pillared bentonites from concentrated clay suspensions Microporous Materials 6 5563 10.1016/0927-6513(95)00081-X.CrossRefGoogle Scholar
Storaro, L. Lenarda, M. Perissinoto, M. Lucchini, V. and Ganzerla, R., (1998) Hydroxy-Al pillaring of concentrated suspensions of smectite clays Microporous & Mesoporous Materials 20 317331 10.1016/S1387-1811(97)00045-0.CrossRefGoogle Scholar
Suslick, K.S. and Price, G.J., (1999) Applications of ultrasound to materials chemistry Annual Review of Materials Science 29 295326 10.1146/annurev.matsci.29.1.295.CrossRefGoogle Scholar
Vaughan, D.E.W., (1998) Pillared clays — A historical perspective Catalysis Today 187 187198.Google Scholar
Yang, R.T. and Li, W.B., (1995) Ion-exchanged pillared clays: a new class of catalysts for selective catalytic reduction of NO by hydrocarbons and by ammonia Journal of Catalysis 155 414417 10.1006/jcat.1995.1223.CrossRefGoogle Scholar