Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T01:02:24.882Z Has data issue: false hasContentIssue false

Synthesis of Ni-rich 1:1 phyllosilicates

Published online by Cambridge University Press:  01 January 2024

Maria Bentabol
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Spain
Maria Dolores Ruiz Cruz*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Spain
F. Javier Huertas
Affiliation:
Estación Experimental del Zaidín, CSIC, Prof. Albareda 1, 18008 Granada, Spain
*
*E-mail address of corresponding author: mdruiz@uma.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rapid dissolution of partly amorphized kaolinite in the systems kaolinite + NiCl2, kaolinite + Ni(OH)2, and kaolinite + NiCl2 + Ni(OH)2, at a temperature of 200°C and at pH between 5.3 and 7.4, leads to the precipitation of Ni-poor kaolinite, Ni-rich kaolinite and Al-Ni-serpentine. Identification of the phases was carried out using a combination of X-ray diffraction and transmission/analytical electron microscopy. Ni-bearing kaolinite shows variable morphologies in the systems studied: stacks of kaolinite with relatively small Ni contents and fine-grained curved particles of Ni-rich kaolinite dominate in the Cl-bearing system; spherical particles with a disordered structure and relatively uniform Ni contents (in the order of 0.15 atoms per formula unit (a.p.f.u.)) and platy particles of Al-Ni-serpentine characterize the products formed in the Ni(OH)2-richest systems. The presence of Ni(OH)2 in the systems (with and without Cl) favors the dissolution process as well as rapid precipitation of spherical particles, and the formation of serpentine. A difference from Mg systems studied previously is a well defined phase intermediate in composition between kaolinite and serpentine which originated in the Ni-bearing systems. Increasing Ni content is clearly reflected in the parallel increase in the b cell parameter of kaolinite. The average composition of the coexisting Al-Ni-serpentine is: (Al1.24Ti0.01Fe0.02Ni1.31) (Si1.58Al0.42)O5(OH,Cl)2.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Angel, B.R. Richards, K. and Jones, J.P.E., (1975) The synthesis, morphology, and general properties of kaolinites specifically doped with metallic ions, and defects generated by irradiation Proceedings of the International Clay Conference 1975 297304.Google Scholar
Balan, E. Allard, T. Boizot, B. Morin, G. and Muller, J.P., (1999) Structural Fe3+ in natural kaolinites: New insights from electron paramagnetic resonance spectra fitting at X and Q-band frequencies Clays and Clay Minerals 47 605616 10.1346/CCMN.1999.0470507.CrossRefGoogle Scholar
Balan, E. Allard, T. Morin, G. and Calas, G., (2002) Incorporation of Cr3+ in dickite: a spectroscopic study Physics and Chemistry of Minerals 29 273279 10.1007/s00269-001-0231-5.CrossRefGoogle Scholar
Bentabol, M. Ruiz Cruz, M.D. Huertas, F.J. and Linares, J., (2006) Hydrothermal synthesis of Mg-rich and Mg-Ni-rich kaolinite Clays and Clay Minerals 54 661–611 10.1346/CCMN.2006.0540602.CrossRefGoogle Scholar
Brindley, G.W. Chih-Chun, K. Harrison, J.L. Lipsicas, M. and Raythatha, R., (1986) Relation between structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Brookins, D.G., (1973) Chemical and X-ray investigation of chromiferous kaolinite (‘miloschite’) from the Geysers, Sonoma County, California Clays and Clay Minerals 21 421422 10.1346/CCMN.1973.0210518.CrossRefGoogle Scholar
Brown, G. Brindley, G.W., Brindley, G.W. and Brown, G., (1980) X-ray diffraction procedures for clay mineral identification Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 305360.CrossRefGoogle Scholar
Cuttler, A.H., (1981) Further studies of ferrous iron doped synthetic kaolin: dosimetry of X-ray induced effects Clay Minerals 16 6980 10.1180/claymin.1981.016.1.05.CrossRefGoogle Scholar
Delineau, T. Allard, T. Muller, J.P. Barrès, O. Yvon, J. and Cases, J.M., (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays and Clay Minerals 42 308320 10.1346/CCMN.1994.0420309.CrossRefGoogle Scholar
Gaite, J.M. Ermakoff, P. and Muller, J.P., (1993) Characterization and origin of two Fe3+ EPR spectra in kaolinite Physic and Chemistry of Minerals 20 242247.Google Scholar
González Jesús, J. Huertas, F.J. Linares, J. and Ruiz Cruz, M.D., (2000) Textural and structural transformations of kaolinites in aqueous solutions at 200°C Applied Clay Science 17 245263 10.1016/S0169-1317(00)00018-1.CrossRefGoogle Scholar
Herbillon, A.J. Mestdagh, M.M. Vielvoye, L. and Derouane, E., (1976) Iron in kaolinite with special reference to kaolinite from tropical soils Clay Minerals 11 201220 10.1180/claymin.1976.011.3.03.CrossRefGoogle Scholar
Huertas, F.J. Fiore, S. and Linares, J., (2004) In situ transformation of amorphous gels into spherical aggregates of kaolinite: A HRTEM study Clay Minerals 39 423431 10.1180/0009855043940144.CrossRefGoogle Scholar
Iriarte, I. Petit, S. Huertas, F.J. Fiore, S. Grauby, O. Decarreau, A. and Linares, J., (2005) Synthesis of kaolinite with a high level of Fe3+ for Al substitution Clays and Clay Minerals 53 110 10.1346/CCMN.2005.0530101.CrossRefGoogle Scholar
Jepson, W.B. and Rowse, J.B., (1975) The composition of kaolinite; an electron microscope microprobe study Clays and Clay Minerals 23 310317 10.1346/CCMN.1975.0230407.CrossRefGoogle Scholar
Lorimer, G.W. Cliff, G. and Wenk, H.R., (1976) Analytical electron microscopy of minerals Electron Microscopy in Mineralogy Berlin Springer-Verlag 506519 10.1007/978-3-642-66196-9_38.CrossRefGoogle Scholar
Maksimovic, Z. and Bish, D.L., (1978) Brindleyite, a nickel-rich aluminous serpentine mineral analogous to berthierine American Mineralogist 63 484489.Google Scholar
Maksimovic, Z. and Brindley, G.W., (1980) Hydrothermal alteration of a serpentinite near Takovo, Yugoslavia, to chromium-bearing illite/smectite, kaolinite, tosudite and halloysite Clays and Clay Minerals 28 295302 10.1346/CCMN.1980.0280408.CrossRefGoogle Scholar
Maksimovic, Z. White, J.L. and Logar, M., (1981) Chromium-bearing dickite and chromium-bearing kaolinite from Teslic, Yugoslavia Clays and Clay Minerals 29 213218 10.1346/CCMN.1981.0290307.CrossRefGoogle Scholar
Martin, F. Petit, S. Decarreau, A. Ildefonse, P. Grauby, O. Beziat, D. Parseval, P. and Noack, Y., (1998) Ga/Al substitution in synthetic kaolinites and smectites Clay Minerals 33 231241 10.1180/000985598545598.CrossRefGoogle Scholar
Meads, R.E. and Maiden, P.S., (1975) Electron-spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Minerals 10 313345 10.1180/claymin.1975.010.5.01.CrossRefGoogle Scholar
Mendelovici, E. Yarif, S.H. and Villalva, R., (1979) Iron-bearing kaolinite in Venezuelan laterites; I. Infrared spectroscopy and chemical dissolution evidence Clay Minerals 14 323331 10.1180/claymin.1979.014.4.08.CrossRefGoogle Scholar
Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., (1980) Iron in kaolinite. II. The relationship between kaolinite crystallinity and iron content Clay Minerals 15 113 10.1180/claymin.1980.015.1.01.CrossRefGoogle Scholar
Newman, A.C.D. and Brown, G., (1987) The chemical constitution of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Ni, X. Zhao, Q. Li, B. Cheng, J. and Zheng, H., (2006) Interconnected β-Ni(OH)2 sheets and their morphology-retained transformation into mesostructured Ni Solid State Communications 137 585588 10.1016/j.ssc.2006.01.033.CrossRefGoogle Scholar
Petit, S. and Decarreau, A., (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites Clay Minerals 25 181196 10.1180/claymin.1990.025.2.04.CrossRefGoogle Scholar
Petit, S. Decarreau, A. Mosser, C. Ehret, G. and Grauby, O., (1995) Hydrothermal synthesis (250°C) of copper-substituted kaolinites Clays and Clay Minerals 43 482494 10.1346/CCMN.1995.0430413.CrossRefGoogle Scholar
Plançon, A. and Zacharie, C., (1990) An expert system for the structural characterization of kaolinites Clay Minerals 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Shannon, R.D., (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica A32 751767 10.1107/S0567739476001551.CrossRefGoogle Scholar
Singh, B. and Gilkes, R.J., (1991) Weathering of a chromian muscovite to kaolinite Clays and Clay Minerals 39 571579 10.1346/CCMN.1991.0390602.CrossRefGoogle Scholar
Stone, W.E.E. and Torres Sánchez, R.M., (1988) Nuclear magnetic resonance spectroscopy applied to minerals. Part 6. Structural iron in kaolinite as viewed by proton magnetic resonance Journal of the Chemical Society, Faraday Transactions 84 117132 10.1039/f19888400117.CrossRefGoogle Scholar
Tomura, S. Shibasaki, Y. Mizuta, H. and Kitamura, M., (1983) Spherical kaolinite: synthesis and mineralogical properties Clays and Clay Minerals 31 413421 10.1346/CCMN.1983.0310602.CrossRefGoogle Scholar
Wolery, T.J., (1992) EQ3/6, a software package for geochemical modeling of aqueous systems USA Lawrence Livermore National Laboratory.Google Scholar