Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T05:36:48.377Z Has data issue: false hasContentIssue false

Tracer Diffusion in Compacted, Water-Saturated Bentonite

Published online by Cambridge University Press:  01 January 2024

Ian C. Bourg*
Affiliation:
Civil and Environmental Engineering, Davis Hall #1710, University of California, Berkeley, CA 94720-1710, USA Environmental HydroGeochemistry (LHGE-JE2397), Université de Pau et des Pays de l’Adour, BP 1155, 64013 Pau Cedex, France Geochemistry Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry cedex, France
Garrison Sposito
Affiliation:
Civil and Environmental Engineering, Davis Hall #1710, University of California, Berkeley, CA 94720-1710, USA Geochemistry Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Alain C. M. Bourg
Affiliation:
Environmental HydroGeochemistry (LHGE-JE2397), Université de Pau et des Pays de l’Adour, BP 1155, 64013 Pau Cedex, France
*
*E-mail address of corresponding author: ibourg@nature.berkeley.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Compacted Na-bentonite clay barriers, widely used in the isolation of solid-waste landfills and other contaminated sites, have been proposed for a similar use in the disposal of high-level radioactive waste. Molecular diffusion through the pore space in these barriers plays a key role in their performance, thus motivating recent measurements of the apparent diffusion coefficient tensor of water tracers in compacted, water-saturated Na-bentonites. In the present study, we introduce a conceptual model in which the pore space of water-saturated bentonite is divided into ‘macropore’ and ‘interlayer nanopore’ compartments. With this model we determine quantitatively the relative contributions of pore-network geometry (expressed as a geometric factor) and of the diffusive behavior of water molecules near montmorillonite basal surfaces (expressed as a constrictivity factor) to the apparent diffusion coefficient tensor. Our model predicts, in agreement with experiment, that the mean principal value of the apparent diffusion coefficient tensor follows a single relationship when plotted against the partial montmorillonite dry density (mass of montmorillonite per combined volume of montmorillonite and pore space). Using a single fitted parameter, the mean principal geometric factor, our model successfully describes this relationship for a broad range of bentonite-water systems, from dilute gel to highly-compacted bentonite with 80% of its pore water in interlayer nanopores.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Alonso, E. Navarro, V., Di Maio, C. Hueckel, T. and Loret, B., (2002) Modelling long term deformation of clay Chemo-Mechanical Coupling in Clays Lisse, The Netherlands Balkema Publishers 167176.Google Scholar
ANDRA, Reférentiel Matériaux, Tome 2, Les Minéraux Argileux (2001) France Châtenay-Malabry.Google Scholar
Bear, J., (1972) Dynamics of Fluids in Porous Media New York Dover Publications.Google Scholar
Bérend, I. Cases, J.-M. François, M. Uriot, J.-P. Michot, L.J. Masion, A. and Thomas, F., (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites. 2: The Li+, Na+, K+, Rb+ and Cs+ exchanged forms Clays and Clay Minerals 43 324336 10.1346/CCMN.1995.0430307.CrossRefGoogle Scholar
Bourg, I.C., (2004) Diffusion of water and inorganic ions in saturated compacted bentonite Berkeley University of California 368 pp.Google Scholar
Boving, T.B. and Grathwohl, P., (2001) Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity Journal of Contaminant Hydrology 53 85100 10.1016/S0169-7722(01)00138-3.CrossRefGoogle ScholarPubMed
Bradley, W.F., (1959) Density of water sorbed on montmorillonite Nature 183 16141615 10.1038/1831614a0.CrossRefGoogle Scholar
Calvet, R., (1973) Hydratation de la montmorillonite et diffusion des cations compensateurs Annales Agronomiques 24 77217.Google Scholar
Cases, J.M. Bérend, I. Besson, G. François, M. Uriot, J.P. Thomas, F. and Poirier, J.E., (1992) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 1. The sodium exchanged form Langmuir 8 27302739 10.1021/la00047a025.CrossRefGoogle Scholar
Chang, F-RC Skipper, N.T. and Sposito, G., (1995) Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates Langmuir 11 27342741 10.1021/la00007a064.CrossRefGoogle Scholar
Chantong, A. and Massoth, F.E., (1983) Restrictive diffusion in aluminas American Institute of Chemical Engineers Journal 29 725731 10.1002/aic.690290505.CrossRefGoogle Scholar
Choi, J.-W. and Oscarson, D.W., (1996) Diffusive transport through compacted Na- and Ca-bentonite Journal of Contaminant Hydrology 22 189202 10.1016/0169-7722(95)00081-X.CrossRefGoogle Scholar
Crank, J., (1975) The Mathematics of Diffusion 2 Oxford, UK Clarendon Press 414 pp.Google Scholar
Dykhuizen, R.C. and Casey, W.H., (1989) An analysis of solute diffusion in rocks Geochimica et Cosmochimica Acta 53 27932805 10.1016/0016-7037(89)90157-9.CrossRefGoogle Scholar
Eriksen, T.E. Jansson, M. and Molera, M., (1999) Sorption effects on cation diffusion in compacted bentonite Engineering Geology 54 231236 10.1016/S0013-7952(99)00078-2.CrossRefGoogle Scholar
Gay-Duchosal, M. Powell, D.H. Lechner, R.E. and Rufflé, B., (2000) QINS studies of water diffusion in Na-montmorillonite Physica B 276/278 234235 10.1016/S0921-4526(99)01421-0.CrossRefGoogle Scholar
Grim, R.E., (1968) Clay Mineralogy 2 New York McGraw-Hill 596 pp.Google Scholar
Güven, N., Güven, N. and Pollastro, R.M., (1992) Rheological aspects of aqueous smectite suspensions Clay-Water Interface and its Rheological Implications Boulder, CO The Clay Minerals Society 81126.Google Scholar
Hall, P.L. Ross, D.K. Tuck, J.J. and Hayes, M.H.B., (1978) Dynamics of interlamellar water in divalent cation exchanged expanding lattice clays Proceedings of the IAEA Symposium on Neutron Inelastic Scattering, Vienna 1977 1 617635.Google Scholar
Hueckel, T. Loret, B. Gajo, A., Di Maio, C. Hueckel, T. and Loret, B., (2002) Expansive clays as two-phase, deformable reactive continua: Concepts and modeling options Chemo-Mechanical Coupling in Clays Lisse, The Netherlands Swets & Zeitlinger 105120.Google Scholar
Ichikawa, Y. Kawamura, K. Fujii, N. and Kitayama, K., (2004) Microstructure and micro/macro-diffusion behavior of tritium in bentonite Applied Clay Science 26 7590 10.1016/j.clay.2003.09.013.CrossRefGoogle Scholar
JNC (2000) H12: Project to establish the scientific and technical basis for HLW disposal in Japan, supporting report 3: safety assessment of the geological disposal system. JNC Technical Report TN1410 2000-04. Japan Nuclear Cycle Development Institute, 445 pp.Google Scholar
Kato, H. Muroi, M. Yamada, N. Ishida, H. Sato, H., Murakami, T. and Ewing, R.C., (1995) Estimation of effective diffusivity in compacted bentonite Scientific Basis for Nuclear Waste Management XVIII Pittsburgh, Pennsylvania Materials Research Society 277284.Google Scholar
Kemper, W.D. Maasland, D.E.L. and Porter, L., (1964) Mobility of water adjacent to mineral surfaces Soil Science Society of America Proceedings 28 164167 10.2136/sssaj1964.03615995002800020012x.CrossRefGoogle Scholar
Keren, R. and Shainberg, I., (1975) Water vapor isotherms and heat of immersion of Na/Ca-montmorillonite systems. I: Homoionic clays Clays and Clay Minerals 23 193200 10.1346/CCMN.1975.0230305.CrossRefGoogle Scholar
Kozaki, T. Sato, H. Fujishima, A. Sato, S. and Ohashi, H., (1996) Activation energy for diffusion of cesium in compacted sodium montmorillonite Journal of Nuclear Science and Technology 33 522524 10.1080/18811248.1996.9731946.CrossRefGoogle Scholar
Kozaki, T. Sato, H. Fujishima, A. Saito, N. Sato, S. Ohashi, H., Gray, W.J. and Triay, I.R., (1997) Effect of dry density on activation energy for diffusion of strontium in compacted sodium montmorillonite Scientific Basis for Nuclear Waste Management XX Pittsburgh, Pennsylvania Materials Research Society 893900.Google Scholar
Kozaki, T. Fujishima, A. Sato, S. and Ohashi, H., (1998) Self-diffusion of sodium ions in compacted montmorillonite Nuclear Technology 121 6369 10.13182/NT98-A2819.CrossRefGoogle Scholar
Kozaki, T. Sato, Y. Nakajima, M. Kato, H. Sato, S. and Ohashi, H., (1999) Effect of particle size on the diffusion behavior of some radionuclides in compacted bentonite Journal of Nuclear Materials 270 265272 10.1016/S0022-3115(98)00782-X.CrossRefGoogle Scholar
Kozaki, T. Inada, K. Sato, S. and Ohashi, H., (2001) Diffusion mechanism of chloride ions in sodium montmorillonite Journal of Contaminant Hydrology 47 159170 10.1016/S0169-7722(00)00146-7.CrossRefGoogle ScholarPubMed
Kozaki, T. Suzuki, S. Kozai, N. Sato, S. and Ohashi, H., (2001) Observation of microstructures of compacted bentonite by microfocus X-ray computerized tomography (Micro-CT) Journal of Nuclear Science and Technology 38 697699 10.1080/18811248.2001.9715085.CrossRefGoogle Scholar
LaGrega, M.D. Buckingham, P.L. and Evans, J.C., (2001) Hazardous Waste Management 2 Boston McGraw-Hill.Google Scholar
Lehikoinen, J. Muurinen, A. Valiainen, M., Wronkiewicz, D. and Lee, J., (1999) A consistent model for anion exclusion and surface diffusion Scientific Basis for Nuclear Waste Management XXII Pittsburgh, Pennsylvania Materials Research Society 663670.Google Scholar
Liu, J. Yamada, H. Kozaki, T. Sato, S. and Ohashi, H., (2003) Effect of silica sand on activation energy for diffusion of sodium ions in montmorillonite and silica sand mixture Journal of Contaminant Hydrology 61 8593 10.1016/S0169-7722(02)00115-8.CrossRefGoogle ScholarPubMed
Liu, J. Kozaki, T. Horiuchi, Y. and Sato, S., (2003) Microstructure of montmorillonite/silica sand mixture and its effects on the diffusion of strontium ions Applied Clay Science 23 8995 10.1016/S0169-1317(03)00091-7.CrossRefGoogle Scholar
Low, P.F. and Anderson, D.M., (1958) The partial specific volume of water in bentonite suspensions Soil Science Society of America Proceedings 22 2224 10.2136/sssaj1958.03615995002200010007x.CrossRefGoogle Scholar
Madsen, F.T., (1998) Clay mineralogical investigations related to nuclear waste disposal Clay Minerals 33 109129 10.1180/000985598545318.CrossRefGoogle Scholar
Marry, V. and Turq, P., (2003) Microscopic simulations of interlayer structure and dynamics in bihydrated heteroionic montmorillonites Journal of Physical Chemistry B 207 18321839 10.1021/jp022084z.CrossRefGoogle Scholar
McCombie, C., (1997) Nuclear waste management worldwide Physics Today 50 6 5662 10.1063/1.881779.CrossRefGoogle Scholar
Michot, L.J. Villiéras, F. François, M. Bihannic, I. Pelletier, M. and Cases, J.-M., (2002) Water organisation at the solid-aqueous solution interface Comptes Rendus Geoscience 334 611631 10.1016/S1631-0713(02)01801-1.CrossRefGoogle Scholar
Mills, R., (1973) Self-diffusion in normal and heavy water in the range 1-45° Journal of Physical Chemistry 77 685688 10.1021/j100624a025.CrossRefGoogle Scholar
Molera, M. and Eriksen, T.E., (2002) Diffusion of 22Na+, 85Sr2+, 134Cs+ and 57Co+ in bentonite clay compacted to different densities: experiments and modeling Radiochimica Acta 90 753760 10.1524/ract.2002.90.9-11_2002.753.CrossRefGoogle Scholar
Murad, M.A. and Cushman, J.H., (2000) Thermomechanical theories for swelling porous media with microstructure International Journal of Engineering Science 38 517564 10.1016/S0020-7225(99)00054-3.CrossRefGoogle Scholar
Muurinen, A. Penttilä-Hiltunen, P. Rantanen, J., Bates, J.K. and Seedfeldt, W.B., (1987) Diffusion mechanisms of strontium and cesium in compacted sodium bentonite Scientific Basis for Nuclear Waste Management X Pittsburgh, Pennsylvania Materials Research Society 803812.Google Scholar
Muurinen, A. Penttilä-Hiltunen, P. Uusheimo, K., Lutze, W. and Ewing, R.C., (1989) Diffusion of chloride and uranium in compacted sodium bentonite Scientific Basis for Nuclear Waste Management XII Pittsburgh, Pennsylvania Materials Research Society 743748.Google Scholar
Nakashima, Y., (2000) Pulsed field gradient proton NMR study of the self-diffusion of H2O in montmorillonite gel: Effects of temperature and water fraction American Mineralogist 85 132138.Google Scholar
Nakashima, Y., (2002) Diffusion of H2O and I in expandable mica and montmorillonite gels: contribution of bound H2O Clays and Clay Minerals 50 110 10.1346/000986002761002603.CrossRefGoogle Scholar
Nakashima, Y., (2004) Nuclear magnetic resonance properties of water-rich gels of Kunigel-V1 bentonite Journal of Nuclear Science and Technology 41 981992 10.1080/18811248.2004.9726321.CrossRefGoogle Scholar
Nakazawa, T., Takano, M., Nobuhara, A., Torikai, Y., Sato, S. and Ohashi, H. (1999) Activation energies of diffusion of tritium and electrical conduction in water-saturated compacted sodium montmorillonite. In: Radioactive Waste Management and Environmental Remediation, American Society of Mechanical Engineers, 5 pp.Google Scholar
Ochs, M. Lothenbach, B. Wanner, H. Sato, H. and Yui, M., (2001) An integrated sorption-diffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite Journal of Contaminant Hydrology 47 283296 10.1016/S0169-7722(00)00157-1.CrossRefGoogle ScholarPubMed
Pezerat, H. and Méring, J., (1967) Recherches sur la position des cations échangeables et de l’eau dans les montmorillonites Comptes Rendus de l’Académie des Sciences de Paris, Série D 265 529532.Google Scholar
Pusch, R., (1999) Microstructural evolution of buffers Engineering Geology 54 3341 10.1016/S0013-7952(99)00059-9.CrossRefGoogle Scholar
Sato, H. and Suzuki, S., (2003) Fundamental study on the effect of an orientation of clay particles on diffusion pathways in compacted bentonite Applied Clay Science 23 5160 10.1016/S0169-1317(03)00086-3.CrossRefGoogle Scholar
Sato, H. Ashida, T. Kohara, Y. Yui, M. and Sasaki, N., (1992) Effect of dry density on diffusion of some radionuclides in compacted sodium bentonite Journal of Nuclear Science and Technology 29 873882 10.1080/18811248.1992.9731607.CrossRefGoogle Scholar
Satterfield, C.N. Colton, C.K. Pitcher, W.H. Jr., (1973) Restricted diffusion in liquids with fine pores American Institute of Chemical Engineers Journal 19 628635 10.1002/aic.690190332.CrossRefGoogle Scholar
Shackelford, C.D., (1991) Laboratory diffusion testing for waste disposal — A review Journal of Contaminant Hydrology 7 177217 10.1016/0169-7722(91)90028-Y.CrossRefGoogle Scholar
Shackelford, C.D. and Lee, J.-M., (2003) The destructive role of diffusion on clay membrane behavior Clays and Clay Minerals 51 186196 10.1346/CCMN.2003.0510209.CrossRefGoogle Scholar
Sposito, G., Güven, N. and Pollastro, R.M., (1992) The diffuse-ion swarm near smectite particles suspended in 1:1 electrolyte solutions: modified Gouy-Chapman theory and quasicrystal formation Clay-Water Interface and its Rheological Implications Boulder, CO The Clay Minerals Society 128155.Google Scholar
Sposito, G. Gupta, V.K. and Bhattacharya, R.N., (1979) Foundation theories of solute transport in porous media: a critical review Advances in Water Resources 2 5968 10.1016/0309-1708(79)90012-5.CrossRefGoogle Scholar
Suzuki, S. Sato, H. Ishidera, T. and Fujii, N., (2004) Study on anisotropy of effective diffusion coefficient and activation energy for deuterated water in compacted sodium bentonite Journal of Contaminant Hydrology 68 2337 10.1016/S0169-7722(03)00139-6.CrossRefGoogle Scholar
Torstenfeit, B., (1986) Migration of the fission products strontium, technetium, iodine and cesium in clay Radiochimica Acta 39 97104.CrossRefGoogle Scholar
van Brakel, J. and Heertjes, P.M., (1974) Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor International Journal of Heat and Mass Transfer 17 10931103 10.1016/0017-9310(74)90190-2.CrossRefGoogle Scholar
van Schaik, J.C. Kemper, W.D. and Olsen, S.R., (1966) Contribution of adsorbed cations to diffusion in clay-water systems Soil Science Society of America Proceedings 30 1722 10.2136/sssaj1966.03615995003000010013x.CrossRefGoogle Scholar
Watanabe, T. and Sato, T., (1988) Expansion characteristics of montmorillonite and saponite under various relative humidity conditions Clay Science 7 129138.Google Scholar
Zheng, C. and Bennett, G.D., (1995) Applied Contaminant Transport Modelling: Theory and Practice New York Van Nostrand Reinhold.Google Scholar