Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T07:01:25.907Z Has data issue: false hasContentIssue false

Unifying Features Relating to the 3D Structures of some Intercalates of Kaolinite

Published online by Cambridge University Press:  01 July 2024

J. M. Adams*
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, SY23 1NE, U.K.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The recent determination of the three-dimensional crystal structure of a dickite:formamide intercalate allows insight into the clay:organic bonding schemes of amides and other small organic molecule intercalates of the kaolin minerals. It is demonstrated that the observed basal spacings of intercalates with these molecules are consistent with hydrogen bonding schemes in which, if possible, triple hydrogen bonds from the clay hydroxyls to 0=C< are formed. Variations in basal spacing within a series of amides can be explained by considering the maximization of hydrogen bonding while avoiding close van der Waals contacts.

Резюме

Резюме

Недавнее определение трехразмерной кристаллической структуры включений диккита: формамида позволяет детальнее изучить глину: органические связывающие схемы амидов и других малых органических молекулярных включений каолиновых минералов. Показывается, что наблюдаемые основные промежутки между включениями и этими молекулами согласуются с водородными связывающими схемами, в которых, если возможно, из глинистых гидроксилов формируются тройные водородные связи 0=с<. Различия в основных промежутках в пределах серий амидов могут быть объяснены максимизацией водородных связей при отсутствии тесных контактов Ван дер Ваалса.

Kurzreferat

Kurzreferat

Die neue Bestimmung der dreidimensionalen Kristallstruktur einer Dickit-Formamideinbettung erlaubt Einblicke in die Bindungsweise der Einbettungen von organischen Amiden und anderen kleinen organischen Molekülen mit Kaolinmineralien. Es wurde gezeigt, daß die erhaltenen Basisabstände von Einbettungen mit diesen Molekülen im Einklang mit Wasserstoffbrückenschemen sind, in welchen, wenn möglich, dreifache Wasserstoffbrücken von den Tonhydroxylgruppen zu den Karbonylgruppen geformt werden. Variationen in den Basisabständen innerhalb einer Serie von Amiden können erklärt werden, indem die Maximisation von Wasserstoffbrücken und zur selben Zeit das Vermeiden von zu nahen van der Waalschen Kontakten berücksichtigt werden.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Adams, J. M. and Jefferson, D. A. (1976) The crystal structure of a dickite: formamide intercalate (Al2Si2O5(OH)4·HCONH2): Acta Crystallogr. B32, 11801183.CrossRefGoogle Scholar
Adams, J. M., Pritchard, R. G. and Thomas, J. M. (1976) Preparation and X-ray crystal structure of guanidinium oxalate dihydrate monoperhydrate: A novel example of crystal engineering: Chem. Commun. 358359.CrossRefGoogle Scholar
Fennol Hach-Ali, P. and Weiss, A. (1969) Estudio de la reaccion de caolinita y N-metilformamida: An. Quim. 65, 769790.Google Scholar
Haase, D. J., Weiss, E. J. and Steinfink, H. (1963) The crystal structure of a hexamethylenediamine-vermiculite complex: Am. Mineral. 48, 261270.Google Scholar
Iglesias, J. E. and Steinfink, H. (1974) A structural investigation of a vermiculite-piperidine complex: Clays & Clay Minerals 22, 9195.CrossRefGoogle Scholar
Kanamaru, F. and Vand, V. (1970) The crystal structure of a clay-organic complex of 6-aminohexanoic acid and vermiculite: Am. Mineral. 55, 15501561.Google Scholar
Ladell, J. and Post, B. (1954) The crystal structure of formamide: Acta Crystallogr. 7, 559564.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L. (1966a) Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide and urea: J. Colloid Interface Sci. 21, 127152.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L. (1966b) Infrared studies of hydrogen bonding of organic compounds on oxygen and hydroxyl surfaces of layer lattice silicates: Proc. Int. Clay Conf. Jerusalem 1, 361374.Google Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M. and Quirk, J. P. (1968) Infrared spectra of kaolin mineral dimethyl sulphoxide complexes: J. Phys. Chem. 72, 241249.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1970) The intercalation of polar organic compounds into kaolinite: Clay Miner. 8, 421434.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1971) Infrared spectrum of the kaolinite-pyridine N-oxide complex: Spectrochim. Acta 27A, 20052009.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P. (1971) The I.R. spectra of interlamellar kaolinite-amide complexes—I. The complexes of formamide, N-methyl formamide and dimethylformamide: Clays & Clay Minerals 19, 8394.CrossRefGoogle Scholar
Pimentel, G. C. and McClellan, A. L. (1960) The Hydrogen Bond: Freeman, London.Google Scholar
Sanchez Camazano, M. and Gonzalez Garcia, S. (1966) Complejos interlaminares de caolinita y haloisita con liquidos polares: An. Edafol. Agrobiol. 25, 925.Google Scholar
Susa, K., Steinfink, H. and Bradley, W. F. (1967) The crystal structure of a pyridine: vermiculite complex: Clay Miner. 7, 145153.CrossRefGoogle Scholar
Weiss, A. and Orth, H. (1973) Layer intercalation compounds of kaolinite, nacrite, dickite and halloysite with pyridine N-oxide and picoline N–oxide: Z. Naturforsch. B28, 252254.CrossRefGoogle Scholar
Weiss, A., Thielepape, W., Goring, G., Ritter, W. and Shafer, H. (1963) Kaolinit-Einlagerungs-Verbindungen: Proc. Int. Clay Conf. Stockholm I, 287305.Google Scholar
Weiss, A., Thielepape, W. and Orth, H. (1966) Neue Kaolinit-Einlagerungouerbindungen: Proc. Int. Clay Conf. Jerusalem I, 277293.Google Scholar