Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T07:26:28.703Z Has data issue: false hasContentIssue false

Unusual X-Ray Characteristics of Vermiculite from Wiry, Lower Silesia, Poland

Published online by Cambridge University Press:  28 February 2024

Boris A. Sakharov
Affiliation:
Geological Institute, Russian Academy of Sciences, Pyzhevsky Street 7, 109017, Moscow, Russia
Elżbieta Dubińska
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, Warsaw University, al. Zwirki i Wigury 93, 02-089 Warsaw, Poland
Paweł Bylina
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland
Grzegorz Kaproń
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, Warsaw University, al. Zwirki i Wigury 93, 02-089 Warsaw, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Coarse-grained vermiculite from a serpentinite-pegmatite thermal zone displays a rational series of narrow 14.4 Å basal reflections and an unusual broad 28 Å peak. X-ray diffraction simulations and fitting techniques show that the 28 Å peak is related to 28 Å domains consisting of elongated 2:1 layers of different lengths. The domains are located at the crystal edges of the vermiculite.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

References

Collins, D.R. Fitch, A.N. and Catlow, R.A., 1992 Dehydration of vermiculites and montmorillonites: a time-resolved powder neutron diffraction study Journal of Materials Chemistry 2 865873 10.1039/jm9920200865.CrossRefGoogle Scholar
de la Calle, C. Suquet, H. and Bailey, S.W., 1988 Vermiculite Hydrous Phyllosilicates (exclusive of micas) Washington, D.C Mineralogical Society of America 455496 10.1515/9781501508998-017.CrossRefGoogle Scholar
Drits, V.A. and Sakharov, B.A. (1976) X-ray Structural Analysis of Mixed-layer Minerals. Transactions of Academy of Sciences U.S.S.R., 295, Moscow, 252 pp. (in Russian).Google Scholar
Drits, V.A. and Tchoubar, C., 1990 X-Ray Diffraction by Lamellar Structures. Theory and Application to Microdivided Silicates and Carbons Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona Springer-Verlag.Google Scholar
Drits, V.A. Eberl, D.D. and Srodon, J., 1998 XRD measurement of mean thickness, thickness distribution and strain for illite and illite/smectite crystallites by the Bertaut-Warren-Awerbach technique Clays and Clay Minerals 46 3850 10.1346/CCMN.1998.0460105.CrossRefGoogle Scholar
Dubinska, E. Jelitto, J. and Kozlowski, A., 1995 Origin and evolution of granite-serpentinite reaction zones at Wiry, Lower Silesia Acta Geologica Polonica 45 4182.Google Scholar
Janeczek, J. and Sachanbitiski, M., 1995 New data on hybridal pegmatite in serpentinite from magnesite mine in Wiry (Lower Silesia) Przeglad Geologiczny 53 777782.Google Scholar
Jelitto, J. Dubinska, E. Wiewióra, A. and Bylina, P., 1993 Layer silicates from serpentinite-pegmatite contact (Wiry, Lower Silesia, Poland) Clays and Clay Minerals 41 693701 10.1346/CCMN.1993.0410607.CrossRefGoogle Scholar
MacEwan, D.M.C. Wilson, M.J., Brindley, G.W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Monograph, 5. Mineralogical Society 197248.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford-New York Oxford University Press.Google Scholar
Pons, C.H. Pozzuoli, A. Rausell-Colon, J.A. and de la Calle, C., 1989 Mechanisme de passage de l’état hydraté à une couche à l’état “zero couche” d’une vermiculite-Li de San-ta-Olalla Clay Minerals 24 479493 10.1180/claymin.1989.024.3.02.CrossRefGoogle Scholar
Reichenbach, H. Graf, V. Wachsmuth, H. and Marcks, C., 1988 Observations at the mica-vermiculite interface with HRTEM Colloid & Polymer Science 266 652656 10.1007/BF01411506.CrossRefGoogle Scholar
Reichenbach, H. Graf, V. and Beyer, J., 1994 Dehydration and rehydration of vermiculites: I. Phlogopitic Mg-vermic-ulite Clay Minerals 29 327340 10.1180/claymin.1994.029.3.04.CrossRefGoogle Scholar
Reichenbach, H. Graf, V. and Beyer, J., 1995 Dehydration and rehydration of vermiculites: II. Phlogopitic Ca-vermiculite Clay Minerals 30 273286 10.1180/claymin.1995.030.4.01.CrossRefGoogle Scholar
Reichenbach, H. Graf, V. Schütte, R., Churchman, G.J. Fitzpatrick, R.W. and Eggleton, R. A., 1995 PH2o-T stability diagrams of hydrated vermiculites, Clays: Controlling the Environment Proceedings of the 10th International Clay Conference Adelaide, Australia 1993 Australia CSIRO Publishing Melbourne 235239.Google Scholar
Reynolds, R.C., 1986 The Lorentz-polarization factor and preferred orientation in oriented clay aggregates Clays and Clay Minerals 34 359367 10.1346/CCMN.1986.0340402.CrossRefGoogle Scholar
Ruiz-Conde, A. Ruiz-Amil, A. Pérez-Rodriguez, J.L. and Sânchez-Soto, P.J., 1996 Dehydration-rehydration in magnesium vermiculite: Conversion from two-one and one-two water layer hydration states through the formation of inter-stratified phases Journal of Materials Chemistry 6 15571566 10.1039/JM9960601557.CrossRefGoogle Scholar
Sachanbinski, M., 1993 Talc and vermiculite occurrence in ultramafic rocks of the Slçza ophiolite (Lower Silesia) Acta Universitatis Wraclaviensis 1412 63117.Google Scholar
Walker, G.W. and Gieseking, J.E., 1975 Vermiculites Soil Components, Vol. 2: Inorganic Components New York-Berlin-Heidelberg Springer 155189 10.1007/978-3-642-65917-1_6.CrossRefGoogle Scholar