Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T04:22:36.606Z Has data issue: false hasContentIssue false

Upper Cretaceous Clayey Levels from Western Portugal (Aveiro and Taveiro Regions): Clay Mineral and Trace-Element Distribution

Published online by Cambridge University Press:  01 January 2024

Rosa Marques*
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal GeoBioTec Research Centre, Universidade de Aveiro, Aveiro, Portugal
M. Isabel Dias
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal GeoBioTec Research Centre, Universidade de Aveiro, Aveiro, Portugal
M. Isabel Prudêncio
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal GeoBioTec Research Centre, Universidade de Aveiro, Aveiro, Portugal
Fernando Rocha
Affiliation:
Universidade de Aveiro, Departamento de Geociências, Aveiro, Portugal GeoBioTec Research Centre, Universidade de Aveiro, Aveiro, Portugal
*
* E-mail address of corresponding author: rmarques@itn.pt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clay-rich deposits of Upper Cretaceous levels in the Taveiro (Reveles and S. Pedro) and Aveiro (Bustos) regions of west-central Portugal are economically and environmentally important, but detailed chemical and mineralogical characterization is lacking. The purpose of this study was to partially fill that gap by correlating the trace-element geochemistry (particularly the rare earth elements, REE) with the mineralogy of both the whole rock and of the <2 μm fraction along selected stratigraphic levels of the formations. The results will help the ceramics industry in the region and will be important in paleoreconstruction environmental studies.

Mineralogical and chemical characterizations were carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The following clay-mineral associations were identified: (1) at Reveles — smectite, illite, and kaolin minerals; (2) at S. Pedro — kaolin minerals and illite; and (3) at Bustos — illite, kaolin minerals, and mixed-layer illite-smectite. The distribution of trace elements in the <2 μm fraction depended on the clay mineralogy, suggesting that the trace elements were incorporated in, adsorbed to, or even replaced major elements in the clays, as follows: (1) first-row transition elements, particularly Zn and Ga, were enriched when smectite predominated; (2) As, Rb, and Cs were enriched in this fraction of the S. Pedro deposit, the only one with Fe (oxyhydr)oxides and a high proportion of illite; and (3) REE were more concentrated when kaolin minerals predominated. Eu was enriched in the <2 μm fraction, which was due to preferential incorporation in the Fe (oxyhydr)oxides and/or carbonates.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

References

Azeredo, A. Ramalho, M. and Wright, V.P., 1998 The Middle-Upper Jurassic disconformity in the Lusitanian basin, Portugal: preliminary facies analysis and evidence for palaeoclimatic fluctuation Cuadernos de Geologia 24 99119.Google Scholar
Bradbury, M.H. and Baeyens, B., 2000 A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks Journal of Contaminant Hydrology 42 141163 10.1016/S0169-7722(99)00094-7.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 10.1180/mono-5.CrossRefGoogle Scholar
Compton, J.S. White, R.A. and Smith, M., 2003 Rare earth element behavior in soils and salt pan sediments of a semiarid granitic terrain in the Western Cape, South Africa Chemical Geology 201 239255 10.1016/S0009-2541(03)00239-0.CrossRefGoogle Scholar
Coroado, J.P.P.F., 2000 Propriedades cerâmicas das argilas das unidades litoestratigráficas Argilas de Aveiro e Argilas de Tomar PhD thesis Portugal University of Aveiro.Google Scholar
Cox, R. Low, D.R. and Cullers, R.L., 1995 The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States Geochimica et Cosmochimica Acta 59 29192940 10.1016/0016-7037(95)00185-9.CrossRefGoogle Scholar
Cullers, R.L., 2002 Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA Chemical Geology 191 305327 10.1016/S0009-2541(02)00133-X.CrossRefGoogle Scholar
Cullers, R.L. and Berendsen, P., 1998 The provenance and chemical variation of sandstones associated with the Midcontinent rift system, USA European Journal of Mineralogy 10 9871002 10.1127/ejm/10/5/0987.CrossRefGoogle Scholar
Cullers, R.L. Bock, B. and Guidotti, C., 1997 Elemental distributions and neodymium isotopic compositions of Silurian metasediments, western Maine, USA: Redistribution of the rare earth elements Geochimica et Cosmochimica Acta 61 18471861 10.1016/S0016-7037(97)00048-3.CrossRefGoogle Scholar
Dias, M.I. and Prudêncio, M.I., 2008 On the importance of using scandium to normalize geochemical data preceding multivariate analyses applied to archaeometric pottery studies Microchemical Journal 88 136141 10.1016/j.microc.2007.11.009.CrossRefGoogle Scholar
Dinis, J.L. Rey, J. Cunha, P.P. Callapez, P. and Pena dos Reis, R., 2008 Stratigraphy and allogenic controls of the western Portugal Cretaceous: an updated synthesis Cretaceous Research 29 772780 10.1016/j.cretres.2008.05.027.CrossRefGoogle Scholar
Galhano, C. Rocha, F. and Gomes, C., 1999 Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the “Argilas de Aveiro” formation (Portugal) Clay Minerals 34 109116 10.1180/000985599545966.CrossRefGoogle Scholar
Gouveia, M.A. Prudêncio, M.I. Freitas, M.C. Martinho, E. and Cabral, J.M.P., 1987 Interference from uranium fission products in the determination of rare earths, zirconium and ruthenium by instrumental neutron activation analysis in rocks and minerals Journal of Radioanalytical and Nuclear Chemistry 2Articles14 309318 10.1007/BF02039805.CrossRefGoogle Scholar
Gouveia, M.A. Prudêncio, M.I. Morgado, I. and Cabral, J.M.P., 1992 New data on the GSJ reference rocks JB-1a and JG-1a by instrumental neutron activation analysis Journal of Radioanalytical and Nuclear Chemistry 158 115120 10.1007/BF02034778.CrossRefGoogle Scholar
Govindaraju, K., 1994 Compilation of working values and sample description for 383 geostandards Geostandards Newsletter 18 1158 10.1111/j.1751-908X.1994.tb00502.x.CrossRefGoogle Scholar
Haskin, L.A., Helmmke, P.A., Paster, T.P., and Allen, R.O. (1971) Activation Analysis in Geochemistry and Cosmogeochemistry (Brunfelt, A.O. and Steinnes, E., editors). Universitetsforlaget, Oslo, pp. 201218.Google Scholar
Kleeberg, R. Monecke, T. and Hillier, S., 2008 Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples Clays and Clay Minerals 56 404415 10.1346/CCMN.2008.0560402.CrossRefGoogle Scholar
Lin, Z. and Puls, R.W., 2000 Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process Environmental Geology 397 753759 10.1007/s002540050490.CrossRefGoogle Scholar
Marques, R., 2007 Geoquimica e mineralogia de argilas do Cretácico de Taveiro e Aveiro, Portugal MSc thesis UniversityofAveiro Portugal, 109 pp.Google Scholar
Martinho, E. Gouveia, M.A. Prudêncio, M.I. Reis, M.F. and Cabral, J.M.P., 1991 Factor for correcting the ruthenium interference in instrumental neutron activation analysis of barium in uraniferous samples Applied Radiations and Isotopes 42 10671071 10.1016/0883-2889(91)90012-P.CrossRefGoogle ScholarPubMed
McLennan, S.M., 1989 Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes Geochemistry and Mineralogy of the Rare Earth Elements 21 169200 10.1515/9781501509032-010.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Oliveira, A. Rocha, F. Rodrigues, A. Jouanneau, J. Dias, A. Weber, O. and Gomes, C., 2002 Clay minerals from the sedimentary cover from the Northwest Iberian shelf Progress in Oceanography 52 233247 10.1016/S0079-6611(02)00008-3.CrossRefGoogle Scholar
Papoulis, D. Tsolis-Katagas, P. and Katagas, C., 2004 Monazite alteration mechanisms and depletion measurements in kaolins Applied Clay Science 24 271285 10.1016/j.clay.2003.08.011.CrossRefGoogle Scholar
Proença Cunha, P. and Pena dos Reis, R.P.B., 1995 Cretaceous sedimentary and tectonic evolution of the northern sector of the Lusitanian basin (Portugal) Cretaceous Research 16 155170 10.1006/cres.1995.1013.CrossRefGoogle Scholar
Prudêncio, M.I. and Cabral, J.M.P., 1988 Rare earths and other trace elements in Cretaceous clays from Central Portugal Journal of Radioanalytical and Nuclear Chemistry 123 No1, 309320 10.1007/BF02036399.CrossRefGoogle Scholar
Prudêncio, M.I. Gouveia, M.A. and Cabral, J.M.P., 1986 Instrumental neutron activation analysis of two French geochemical reference samples - basalt BR and biotite Mica-Fe Geostandards Newsletter X 2931 10.1111/j.1751-908X.1986.tb00805.x.CrossRefGoogle Scholar
Prudêncio, M.I. Figueiredo, M.O. and Cabral, J.M.P., 1989 Rare earth distribution and its correlation with clay mineralogy in the clay-sized fraction of Cretaceous and Pliocene sediments (central Portugal) Clay Minerals 24 6774 10.1180/claymin.1989.024.1.06.CrossRefGoogle Scholar
Prudêncio, M.I. Sequeira Braga, M.A. Oliveira, F. Dias, M.I. Delgado, M. and Martins, M., 2006 Raw material sources for the Roman Bracarense ceramic (NW Iberian Península) Clays and Clay Minerals 54 639651 10.1346/CCMN.2006.0540510.CrossRefGoogle Scholar
Rocha, F.T., 1993 Argilas aplicadas a estudos litoestratigráficos e paleoambientais na bacia sedimentar de Aveiro PhD thesis Portugal University of Aveiro.Google Scholar
Rocha, F. and Gomes, C., 1995 Paleoenvironmental reconstruction of the Aveiro region during Cretaceous based on clay mineralogy Cretaceous Research 16 187194 10.1006/cres.1995.1015.CrossRefGoogle Scholar
Santos, M.H., 1998 Potencialidades de argilas portuguesas para o uso como materiais de selagem em sistemas geoambientais de confinamento de resíduos MSc thesis Portugal University of Aveiro.Google Scholar
Santos, M.H., Rocha, F., and Gomes, C. (2000) Assessment of some relevant properties of the “Argilas de Taveiro” formation (Coimbra, Portugal) in order to be used as liners in land-fills. Geociências, Revista Universidad Aveiro, vol 14, fasc (1/2).Google Scholar
Schultz, L.G., 1964 Quantitative interpretation of mineralogical composition X-ray and chemical data for the Pierre Shale Geological Survey .CrossRefGoogle Scholar
Setti, M. Marinoni, L. and Loópez-Galindo, A., 2004 Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica Clay Minerals 39 405421 10.1180/000985503540143.CrossRefGoogle Scholar
Statsoft, I.n.c.. (2008) Statistica (data analysis software system), version 8.0. .Google Scholar
Terroso, D., 2005 Argilas/Lamas e Águas Termais das Furnas (Açores): avaliação das propriedades físicas e químicas relevantes para a utilização em Peloterapia MSc thesis Portugal University of Aveiro.Google Scholar
Thorez, J., 1976 Practical Identification of Clay Minerals Dison, Belgium G. Lelotte.Google Scholar
Wronkiewicz, D.J. and Condie, K.C., 1990 Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: cratonic evolution during the early Proterozoic Geochimica et Cosmochimica Acta 54 343354 10.1016/0016-7037(90)90323-D.CrossRefGoogle Scholar
Zachara, J.M. Smith, S.C. Liu, C. Mckinley, P. Serne, R.J. and Gassman, P.L., 2002 Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA Geochimica et Cosmochimica Acta 66 193211 10.1016/S0016-7037(01)00759-1.CrossRefGoogle Scholar