Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T06:50:34.105Z Has data issue: false hasContentIssue false

Vanadium-Titanium-Bearing Mixed-Layered Clay from Potash Sulphur Springs, Arkansas

Published online by Cambridge University Press:  01 July 2024

George R. McCormick*
Affiliation:
Department of Geology, The University of Iowa, Iowa City, IA 52242, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A unique vanadium-titanium-bearing mixed-layered clay is currently being mined as an ore of vanadium at Potash Sulphur Springs, AR. The clay contains 80% expandable portion and has both a 14.22 and 18.24 Å hydration state in addition to the 9.49 Å dehydrated state; ethylene glycol expands this material to 16.69 Å. The 060 reflection for all hydration states is between 1.50 and 1.51 Å indicating the material is dioctahedral. The “mean chemical formula” calculates as(Ca0.08 K0.02 Na0.03)0.13 (Al0.11 V0.90 Ti0.19 Fe0.64 Mg0.14)1.98 (Si3.79 Al0.21)4 O10 (OH)2·nH2O.

Резюме

Резюме

Уникальная ванадий-титаносная смешанно-слойная глина в настоящее время добывается в качестве руды ванадия на месторождении Поташ Сульфа Спрингс, Ap. Глина включает 80% расширяемой части и имеет гидратные состояния 14,22 и 18,24Å в дополнение к дегидратному состоянию 9,49Å. Этиленгли-коль расширяет этот материал до 16,69Å. Отражение 060 для всех гидратных состояний находится между 1,50 и 1,51Å, указывая, что материал является ди-октаэдрическим. “Средняя химическая формула” вычислена в виде(Ca0.08 K0.02 Na0.03)0.13 (Al0.11 V0.90 Ti0.19 Fe0.64 Mg0.14)1.98 (Si3.79 Al0.21)4 O10 (OH)2·nH2O.

Kurzreferat

Kurzreferat

Ein einmaliger, Vanadin-Titan haltiger, gemischt-Schicht Ton wird im Augenblick als Vanadinerz in Potash Sulphur Springs, Ar. abgebaut. Der Ton besteht zu 80% aus schwellbarem Teil, und hat nicht nur einen 14,22A und einen 18,24A Hydratationszustand, sondern auch einen 9,49 A Dehydratationszustand. Athylenglykol expandiert dieses Material bis auf 16,69A. Die 060 Reflektion für alle Hydratationszustände ist zwischen 1,50 A und 1,51A, was andeutet,daß das Material dioktahedrisch ist. Die durchschnittliche chemische Formel wurde ausgerechnet als:(Ca0.08 K0.02 Na0.03)0.13 (Al0.11 V0.90 Ti0.19 Fe0.64 Mg0.14)1.98 (Si3.79 Al0.21)4 O10 (OH)2·nH2O.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Belt, C. B. (1967) Partial analysis of silicate rocks by atomic absorption: Anal. Chem. 39, 676678.CrossRefGoogle Scholar
Brindley, G. W. and Youell, R. F. (1951) A chemical determination of ‘Tetrahedral’ and ‘Octahedral’ aluminum ions in a silicate: Acta Crystallogr. 4, 495496.CrossRefGoogle Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Minerals: Mineralogical Soc. (Clay Minerals Group), London , 544 pp. Jarrold, Norwich.Google Scholar
Brown, G. and Norrish, K. (1952) Hydrous micas: Mineral. Mag. 29, 929932.Google Scholar
Erickson, R. L. and Blade, L. V. (1963) Geochemistry and petrology of the alkalic igneous complex at Magnet Cove, Arkansas: U.S. Geol. Surv. Prof. Paper 320, 91102.Google Scholar
Gastuche, M. C. and Fripiat, J. J. (1962) Acid solution techniques applied to the determination of the structures of clay and controlled by physical methods: Sci. Ceram. 1, 121138.Google Scholar
Grim, R. E. (1968) Clay Mineralogy, 2nd ed., 596 pp. McGraw-Hill, New York.Google Scholar
Heathcote, R. C. (1976) Fenitization of the Arkansas novaculite and adjacent intrusive, Garland County, Arkansas: Unpublished master's thesis, University of Arkansas, 56 pp.Google Scholar
Heinrich, R. W. (1966) The Geology of Carbonatites, 555 pp. Rand McNally, Chicago.Google Scholar
Howard, J. M. (1974) Transition element geochemistry and petrology of the Potash Sulphur Springs intrusive complex, Garland County, Arkansas: Unpublished master's thesis, University of Arkansas, 70 pp.Google Scholar
Hower, J. and Mowatt, T. C. (1966) The mineralogy of illites and mixed-layer illite/montmorillonites: Am. Mineral. 51, 825854.Google Scholar
McClelland, S. W. (1973) Crystallography and petrology of kammererite from the Day Book Body, Yancey County, North Carolina: Unpublished master's thesis, University of Iowa, 32 pp.Google Scholar
McCormick, G. R. (1975) A chemical study of kamrnererite, Day Book Body, Yancey County, North Carolina: Am. Mineral. J. 60, 924927.Google Scholar
Miller, D. K. (1969) Fission track ages of some North American micas: Unpublished master's thesis, University of Arkansas, 35 pp.Google Scholar
Naeser, C. W. and Paul, H. (1969) Fission track annealing in apatite and sphene: J. Geophys. Res. 74, 705710.CrossRefGoogle Scholar
Osthaus, B. (1956) Kinetic studies on montmorillonites and nontronites by the acid-dissolution technique: 4th Natl. Conf. Clays and Clay Minerals, Nat. Academy of Sciences. Natl. Res. Counc. Publ. 456, 301321.Google Scholar
Pollock, D. W. (1965) The Potash Sulphur Springs alkali complex, Garland County, Arkansas: Manuscript and map filed at Ark. Geol. Comm., also abs. in Min. Eng. no. 12, 4546.Google Scholar
Purdue, A. H. and Miser, H. D. (1923) Description of the Hot Springs District: U.S. Geol. Surv. Geological Atlas, Hot Springs Folio 215, 17 pp.Google Scholar
Ross, C. S. and Hendricks, S. B. (1945) Minerals of the montmorillonite group. Their origin and relation to soils and clays: U.S. Geol. Surv. Prof. Paper 205–B, 2379.Google Scholar
Tuttle, O. F. and Gittins, J. (1966) Carbonatites, 591 pp. Wiley–Interscience, New York.Google Scholar
Warshaw, C. M. and Roy, R. (1961) Classification and a scheme for the identification of layer silicates: Bull. Geol. Soc. Am. 72, 14551492.CrossRefGoogle Scholar
Weaver, C. E. (1956) The distribution and identification of mixed-layer clays in sedimentary rocks: Am. Mineral. 41, 202221.Google Scholar