Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T11:35:11.040Z Has data issue: false hasContentIssue false

Zeolites in Pyroclastic Deposits in Southeastern Tenerife (Canary Islands)

Published online by Cambridge University Press:  28 February 2024

J. E. Garcia Hernandez
Affiliation:
Department of Pedology and Geology, University of La Laguna, 38204 La Laguna, Tenerife, Canary Islands, Spain
J. S. Notario del Pino
Affiliation:
Department of Pedology and Geology, University of La Laguna, 38204 La Laguna, Tenerife, Canary Islands, Spain
M. M. Gonzalez Martin
Affiliation:
Department of Pedology and Geology, University of La Laguna, 38204 La Laguna, Tenerife, Canary Islands, Spain
F. Hernan Reguera
Affiliation:
Department of Pedology and Geology, University of La Laguna, 38204 La Laguna, Tenerife, Canary Islands, Spain
J. A. Rodriguez Losada
Affiliation:
Department of Pedology and Geology, University of La Laguna, 38204 La Laguna, Tenerife, Canary Islands, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical and the mineralogical composition of a group of pumiceous tuffs associated with recent salic volcanic episodes from Tenerife (Canary Islands) have been studied. The investigation focused on the two main types of pyroclastic deposits of the zone: ash-flows and ash-falls. The samples can be classified chemically as trachytic and phonolitic rocks with an intermediate silica content and a high percentage of alkali cations (Na+ and K+). The mineralogical composition, determined by X-ray diffraction, scanning electron microscopy, and optical microscopy, shows the occurrence of zeolites (mainly phillipsite, with lesser chabazite and analcime), associated with the parent glass. K-feldspar (sanidine) and calcite are accessory minerals. Zeolites are significantly more abundant in the ash-flow deposits. Zeolite formation by hydrothermal weathering in closed-system conditions varies according to the nature and the origin of the pyroclastic deposits. Tenerife phillipsites differ from typical diagenetic, lacustrine, and deep-sea phillipsites, both in chemical and mineralogical features. Alkali cations exceed divalent cations in the unit-cell that, assuming a monoclinic symmetry, has the following parameters: a = 8.46–10.55 Å, b = 14.21–14.40 Å, c = 7.80–8.70 Å, and β = 105°–110°.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Abdel-Monem, A., Watkins, N. D. and Gast, P. W., 1972 Potassium-argon ages, volcanic stratigraphy, and geomagnetic polarity history of the Canary Islands: Tenerife, La Palma and Hierro Am. J. Sci. 272 805825 10.2475/ajs.272.9.805.CrossRefGoogle Scholar
Aleksiev, B. and Djourova, E. G., 1975 On the origin of zeolite rocks C. R. Acad. Bulg. Sci. 28 517520.Google Scholar
Alonso, J. J., 1986 Mecanismos de emisión y transporte de los grandes depósitos piroclásticos del Sur de Tenerife Anales de Física serie B 82 176185.Google Scholar
Alonso, J. J., (1989) Estudio volcanoestratigráfico y volcano-lógico de los piroclastos sálicos del Sur de Tenerife: Ph.D. thesis, University of La Laguna, 257 pp.Google Scholar
Ancochea, E., Fúster, J. M., Ibarrola, E., Cendrero, A., Coello, J., Hernán, F., Cantagrel, J. M. and Jamond, C., 1990 Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data J. Volcanol. Geotherm. Res. 44 231249 10.1016/0377-0273(90)90019-C.CrossRefGoogle Scholar
Chung, F., 1974 Interpretation of X-ray diffraction patterns of mixtures J. Appl. Crystallogr. 7 519531 10.1107/S0021889874010375.CrossRefGoogle Scholar
Colella, C., Aiello, R., and Porcelli, C., (1978) Hydration as an early stage in the zeolitization of volcanic glass: in Natural Zeolites: Occurrence, Properties, Use, Sand, L. B., and Mumpton, F. A., eds., New York, 345350.Google Scholar
De’Gennaro, M., Franco, E., Kallo, D. and Sherry, H. S., 1985 Mineralogy of Italian sedimentary phillipsite and chabazite Occurrence, Properties and Utilization of Natural Zeolites Budapest Akademiai Kiado 8797.Google Scholar
De’ Gennaro, M., Colella, C., Franco, E. and Stanzione, D., 1988 Hydrothermal conversion of trachytic glass into zeolite 1. Reactions with deionized water N. Jb. Miner. Mh. 4 149158.Google Scholar
Gottardi, G. and Galli, A., 1985 Natural Zeolites: Minerals and Rocks, 18 Berlin Springer-Verlag 10.1007/978-3-642-46518-5.CrossRefGoogle Scholar
Gottardi, G., 1989 The genesis of zeolites Eur. J. Miner. 1 479487 10.1127/ejm/1/4/0479.CrossRefGoogle Scholar
Hawkins, D. B., 1981 Kinetics of glass dissolution and zeolite formation under hydrothermal conditions Clays & Clay Minerals 29 331340 10.1346/CCMN.1981.0290503.CrossRefGoogle Scholar
Hay, R. L., (1978) Geologic occurrence of zeolites: in Natural Zeolites: Occurrence, Properties, Use, Sand, L. B., and Mumpton, F. A., eds., New York, 135143.Google Scholar
Höller, H., and Wirsching, U., (1978) Experiments on the formation of zeolites by hydrothermal alteration of volcanic glasses: in Natural Zeolites: Occurrence, Properties, Use, Sand, L. B., and Mumpton, F. A., eds., New York, 329336.Google Scholar
Iijima, A., (1978) Geological occurrences of zeolites in marine environments: in Natural Zeolites: Occurrence, Properties, Use, Sand, L. B., and Mumpton, F. A., eds., New York, 175198.Google Scholar
Kunkel, G., 1976 Biogeography and Ecology in the Canary Islands The Hague Dr. W. Junk bv Publishers 10.1007/978-94-010-1566-0.CrossRefGoogle Scholar
Le Bas, M. I., Le Maitre, R. W., Streckeisen, A. and Zannetin, B., 1986 A chemical classification of volcanic rocks based on the total alkali-silica diagram J. Petrol. 27 745750 10.1093/petrology/27.3.745.CrossRefGoogle Scholar
Lenzi, G. and Passaglia, E., 1974 Fenomeni di zeolitizza-zione nelle formazioni vulcaniche della regione sabatina Boll. Soc. Geol. Ital. 93 623645.Google Scholar
Mumpton, F. A. and Ormsby, W. C., 1976 Morphology of zeolites in sedimentary rocks by scanning electron microscopy Clays & Clay Minerals 24 123 10.1346/CCMN.1976.0240101.CrossRefGoogle Scholar
Passaglia, E., Vezzalini, G. and Carnevali, R., 1990 Dia-genetic chabazites and phillipsites in Italy: Crystal chemistry and genesis Eur. J. Mineral. 2 827839 10.1127/ejm/2/6/0827.CrossRefGoogle Scholar
Ridley, W. I., 1967 Volcanoclastic rocks in Tenerife, Canary Islands Nature 7 5556 10.1038/213055a0.CrossRefGoogle Scholar
Rinaldi, R., Pluth, J. J. and Smith, J. V., 1974 Zeolites of the phillipsite family. Refinement of the crystal structures of phillipsite and harmotome Acta Crystallogr. 30 24262433 10.1107/S0567740874007242.CrossRefGoogle Scholar
Ross, C. S. and Smith, R. L., 1955 Water and other volatiles in volcanic glasses Amer. Mineral. 40 10711089.Google Scholar
Sersale, R., (1978) Occurrences and uses of zeolites in Italy: in Natural Zeolites: Occurrence, Properties, Use, Sand, L. B., and Mumpton, F. A., eds., New York, 285302.Google Scholar
Sheppard, R. A. and Fitzpatrick, J. J., 1989 Phillipsite from silicic tuffs in saline, alkaline-lake deposits Clays & Clay Minerals 37 243247 10.1346/CCMN.1989.0370307.CrossRefGoogle Scholar
Stonecipher, S., (1978) Chemistry and deep-sea phillipsite, clinoptilolite, and host sediments: in Natural Zeolites: Occurrence, Properties, Use, Sand, L. B., and Mumpton, F. A., eds., 221234.Google Scholar
Surdam, R. C., and Sheppard, R. A., (1978) Zeolites in saline, alkaline-lake deposits: in Natural Zeolites: Occurrence, Properties, Use, Sand, L. B., and Mumpton, F. A., eds., New York, 145174.Google Scholar
Von Balmoos, R., 1990 Collection of X-ray simulated patterns of zeolites Zeolites 10 468S469S.Google Scholar