Fireclay deposits occur in Latah County, Idaho, as residual weathered products, and as lacustrine sediments comprising part of the Miocene Latah formation. The residual deposits were developed upon granitic (granodioritic, gneissic) masses by surface weathering. The lacustrine fireclays were derived dominantly from weathered residuum and to a minor extent from volcanic ash.
Mineral proportions in the residual clay are typically as follows: kaolin minerals, 65 percent; quartz, 20 percent; K-bearing micas, 12 percent; and montmorillonite-chlorite mixed-layer clay, trace.
The sedimentary fireclay deposits range widely in clay content, from some that are almost wholly kaolin to others containing as little clay as the residual material, or alternatively, to those meeting minimal requirements of fireclay. As the content of kaolin decreases in the deposits, there is a corresponding increase in content of quartz, K-bearing micas, and in the less abundant components orthoclase, mixed-layer illite— montmorillonite, and mixed-layer chlorite—montmorillonite.
In both the transported and residual clay bodies the kaolin minerals are, in order of decreasing abundance, halloysite, endellite, and fireclay mineral.
The lake deposits also contain seams of poorly crystallized kaolin that is inferred to have been derived from volcanic ash because (1) it contains minor quantities of tridymite, sanidine, and volcanic glass, and (2) it contains notably more endellite and allophane (amorphous and relatively soluble in NaOH) than is present in the other kaolin deposits. Endellite seemingly has developed in two separate geologic environments: as an alteration product of granodiorite gneiss by surface weathering and as an alteration product of volcanic ash deposited and altered in a fresh-water lake. It is postulated that endellite is a relatively common product of weathering.