Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T16:55:56.090Z Has data issue: false hasContentIssue false

Functional Neuroimaging in Neurology and Psychiatry

Published online by Cambridge University Press:  07 November 2014

Abstract

How can functional neuroimaging be applied to clinical neurology and psychiatry? This article reviews selected contributions of functional neuroimaging to the clinical neurosciences. We review selected technical aspects of positron emission tomography, single photon emission tomography, and functional magnetic resonance imaging with a focus on the relative strengths and weaknesses of these techniques. Consumers of functional neuroimaging research are encouraged to consider the limitations of imaging techniques and theoretical pitfalls of cognitive task design when interpreting results of functional imaging studies. Then, we selectively review the contributions of functional neuroimaging to neurology and psychiatry, including the areas of epilepsy, stroke, chronic pain, schizophrenia, depression, and obsessive-compulsive disorder. Future directions of functional neuroimaging research are offered, with the emphasis that the best conclusions are informed by a convergence of research from functional neuroimaging, neurophysiological, and lesion studies.

Type
Feature Article
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cox, RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:162173.CrossRefGoogle ScholarPubMed
2.Friston, KJ, Jezzard, P, Turner, R. Analysis of functional MRI time-series. Hum Brain Map 1994;1:153171.CrossRefGoogle Scholar
3.Talairach, J, Tournoux, P. Co-planar stereotaxic atlas of the human brain: 3D proportional system: an approach to cerebral imaging. New York, NY: Georg Thieme Verlag; 1988.Google Scholar
4.Nadeau, SE, Crosson, B. A guide to the functional imaging of cognitive processes. Neuropsychiatry Neuropsychol Behav Neurol. 1995; 8:143162.Google Scholar
5.D'Esposito, M. Functional neuroimaging of cognition. Semin Neurol. 2000;20:487498.CrossRefGoogle ScholarPubMed
6.Cabeza, R, Nyberg, L. Imaging cognition II: An empirical review of 275 PET and fMRI studies [review]. J Cogn Neurosci. 2000;12:147.CrossRefGoogle Scholar
7.Chertkow, H, Bub, D. Functional activation and cognition: The 150 PET subtraction method. In: Kertesz, A, ed. Localization and Neuroimaging in Neuropsychology. San Diego, Calif: Academic Press; 1994.Google Scholar
8.Fahey, FH. Positron emission tomography instrumentation. Radiol Clin North Am. 2001;39:919929.CrossRefGoogle ScholarPubMed
9.Metter, EJ, Hanson, WR. Use of positron emission tomography to study aphasia. In: Kertesz, A, ed. Localization and Neuroimaging in Neuropsychology. San Diego, Calif: Academic Press; 1994.Google Scholar
10.Ogawa, S, Lee, TM, Kay, AR, Tank, DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:98689872.CrossRefGoogle ScholarPubMed
11.Binder, JR, Rao, SM, Hammeke, TA, Frost, JA, Bandettini, PA, Jesmanowicz, A, et al.Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol. 1995;52:593601.CrossRefGoogle ScholarPubMed
12.Price, CJ, Wise, RJ, Frackowiak, RS. Demonstrating the implicit processing of visually presented words and pseudowords. Cereb Cortex. 1996;6:6270.CrossRefGoogle ScholarPubMed
13.Friston, KJ, Price, CJ, Fletcher, P, Moore, C, Frackowiak, RS, et al.The trouble with cognitive subtraction. Neuroimage. 1996;4:97104.CrossRefGoogle ScholarPubMed
14.Binder, JR, Frost, JA, Hammeke, TA, Bellgowan, PS, Rao, SM, Cox, RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci. 1999;11:8095.CrossRefGoogle Scholar
15.Stark, CEL, Squire, LR. When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci U S A. 2001;98:1276012766.CrossRefGoogle Scholar
16.Gorno-Tempini, ML, Price, CJ, Josephs, O, Vandenberghe, R, Cappa, SF, Kapur, N, et al.The neural systems sustaining face and proper-name processing. Brain. 1998;121(Pt 11):21032118.CrossRefGoogle ScholarPubMed
17.Shellock, FG, Kanal, E. Magnetic Resonance: Bioeffects, Safety, and Patient Management (2nd ed.). Philadelphia, Pa: Lippincott-Raven; 1996.Google Scholar
18.Melendez, C, McCrank, E. Anxiety-related reactions associated with magnetic resonance imaging examinations. JAMA. 1993;270:745747.CrossRefGoogle ScholarPubMed
19.Thorp, D, Owens, RG, Whitehouse, G, Dewey, ME. Subjective experiences of magnetic resonance imaging. Clin Radiol. 1990;41:276278.CrossRefGoogle ScholarPubMed
20.Springer, JA, Binder, JR, Hammeke, TA, et al.Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain. 1999;122(Pt 11):20332046.CrossRefGoogle ScholarPubMed
21.Levin, JM, Ross, MH, Mendelson, JH, et al.Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Res. 1998;82:135146.CrossRefGoogle ScholarPubMed
22.Gollub, RL, Breiter, HC, Kantor, H, et al.Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects. J Cereb Blood Flow Metab. 1998;18:724734.CrossRefGoogle Scholar
23.Sell, LA, Simmons, A, Lemmens, GM, Williams, SC, Brammer, M, Strang, J. Functional magnetic resonance imaging of the acute effect of intravenous heroin administration on visual activation in long-term heroin addicts: results from a feasibility study. Drug Alcohol Depend. 1997;49:5560.CrossRefGoogle ScholarPubMed
24.Hammeke, TA. Functional MRI in neurology. In: Moonen, CTW, Bandettini, PA, eds. Functional MRI. New York, NY: Springer; 1999:475486.Google Scholar
25.Detre, JA, Floyd, TF. Functional MRI and its applications to the clinical neurosciences. Neuroscientist. 2001;7:6479.CrossRefGoogle Scholar
26.Wiebe, S, Blume, WT, Girvin, JP, Eliasziw, M. A randomized, controlled trial of surgery for temporal lobe epilepsy. N Engl J Med. 2001;345:311318.CrossRefGoogle ScholarPubMed
27.Richardson, MP. Case reports—functional imaging in epilepsy. Seizure. 2001;10:157161.CrossRefGoogle ScholarPubMed
28.Gaillard, WD, Bookheimer, SY, Cohen, M. The use of fMRI in neocortical epilepsy. Adv Neurol. 2000;84:391404.Google ScholarPubMed
29.Binder, JR, Swanson, SJ, Hammeke, TA, Morris, GL, Mueller, WM, Fischer, M, et al.Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46:978984.CrossRefGoogle ScholarPubMed
30.Binder, JR, Hammeke, TA, Possing, ET, Swanson, SJ, Spanaki, MV, Morris, , et al.Reliability and validity of language dominance assessment with functional MRI. Neurology. 2001;56(suppl):A158.Google Scholar
31.Demb, JB, Desmond, JE, Wagner, AD, Vaidya, CJ, Glover, GH, Gabrieli, JD. Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J Neurosci. 1995;15:58705878.CrossRefGoogle ScholarPubMed
32.Hertz-Pannier, L, Gaillard, WD, Mott, SH, Cuenod, CA, Bookheimer, SY, Weinstein, S, et al.Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology. 1997;48:10031012.CrossRefGoogle ScholarPubMed
33.Stern, CE, Corkin, S, Gonzalez, RG, Guimaraes, AR, Baker, JR, Jennings, PJ, et al.The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci U S A 1996;93:86608665.CrossRefGoogle ScholarPubMed
34.Petersson, KM, Elfgren, C, Ingvar, M. A dynamic role of the medial temporal lobe during retrieval of declarative memory in man. Neuroimage. 1997;6:111.CrossRefGoogle ScholarPubMed
35.Detre, JA, Maccotta, L, King, D, Alsop, DC, Glosser, G, D'Esposito, M, et al.Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology. 1998;50:926932.CrossRefGoogle ScholarPubMed
36.Puce, A, Constable, RT, Luby, ML, McCarthy, G, Nobre, AC, Spencer, DD, et al.Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg. 1995;83:262270.CrossRefGoogle ScholarPubMed
37.Atlas, SW, Howard, RS, Maldjian, J, Alsop, D, Detre, JA, Listerud, J, et al.Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery. 1996;38:329338.CrossRefGoogle ScholarPubMed
38.Lee, CC, Jack, CR Jr, Riederer, SJ. Use of functional magnetic resonance imaging. Neurosurg Clin N Am. 1996;7:665683.CrossRefGoogle ScholarPubMed
39.Mueller, WM, Yetkin, FZ, Hammeke, TA, Morris, GL III, Swanson, SJ, et al.Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39:515520.CrossRefGoogle ScholarPubMed
40.DeYoe, EA, Carman, GJ, Bandettini, P, Glickman, S, Wieser, J, Cox, R, et al.Mapping striate and extrastriate visual areas in human cereb cortex. Proc Natl Acad Sci U S A. 1996;93:23822386.CrossRefGoogle Scholar
41.Victor, JD, Apkarian, P, Hirsch, J, Conte, MM, Packard, M, Relkin, NR, et al.Visual function and brain organization in non-decussating retinal-fugal fibre syndrome. Cereb Cortex. 2000;10:222.CrossRefGoogle ScholarPubMed
42.Crosson, B, Rao, SM, Woodley, SJ, Rosen, AC, Bobholz, JA, Mayer, A, et al.Mapping of semantic, phonological, and orthographic verbal working memory in normal adults with functional magnetic resonance imaging. Neuropsychology. 1999;13:171187.CrossRefGoogle ScholarPubMed
43.Beauchamp, MS, Haxby, JV, Jennings, JE, DeYoe, EA. An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cereb Cortex. 1999;9:257263.CrossRefGoogle ScholarPubMed
44.Loessner, A, Alavi, A, Lewandrowski, KU, Mozley, D, Souder, E, et al.Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med. 1995;36:11411149.Google ScholarPubMed
45.Moeller, JR, Ishikawa, T, Dhawan, V, Spetsieris, P, Mandel, F, et al.The metabolic topography of normal aging. J Cereb Blood Flow Metab. 1996;16:385398.CrossRefGoogle ScholarPubMed
46.Eustache, F, Rioux, P, Desgranges, B, Marchal, G, Petit-Taboue, MC, Dary, M, et al.Healthy aging, memory subsystems and regional cerebral oxygen consumption. Neuropsychologia. 1995;33:867887.CrossRefGoogle ScholarPubMed
47.Jagust, WJ. Functional imaging patterns in Alzheimer's disease. Relationships to neurobiology. Ann N Y Acad Sci. 1996;777:3036.CrossRefGoogle ScholarPubMed
48.Reiman, EM, Caselli, RJ, Yun, LS, Chen, K, Bandy, D, Minoshima, S, et al.Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med. 1996;334:752758.CrossRefGoogle ScholarPubMed
49.Small, GW, Mazziotta, JC, Collins, MT, Baxter, LR, Phelps, ME, Mandelkern, MA, et al.Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer's disease. JAMA. 1995;273:942947.CrossRefGoogle Scholar
50.Johnson, KA, Jones, K, Holman, BL, Becker, JA, Spiers, PA, Satlin, A, et al.Preclinical prediction of Alzheimer's disease using SPECT. Neurology. 1998;50:15631571.CrossRefGoogle ScholarPubMed
51.Collette, F, Salmon, E, Van der, LM, Degueldre, C, Franck, G. Functional anatomy of verbal and visuospatial span tasks in Alzheimer's disease. Hum Brain Map. 1997;5:110118.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
52.Baddeley, AD, Bressi, S, Della, SS, Logie, R, Spinnler, H. The decline of working memory in Alzheimer's disease. A longitudinal study. Brain. 1991;114(Pt 6):25212542.CrossRefGoogle ScholarPubMed
53.Gonzalez, RG, Fischman, AJ, Guimaraes, AR, Carr, CA, Stern, CE, et al.Functional MR in the evaluation of dementia: correlation of abnormal dynamic cerebral blood volume measurements with changes in cerebral metabolism on positron emission tomography with fludeoxyglucose F 18. AJNR Am J Neuroradiol. 1995;16:17631770.Google ScholarPubMed
54.Biswal, B, Yetkin, FZ, Haughton, VM, Hyde, JS. Functional connectivity in the motor cortex of resting human brain using echo planar MRI. Magn Reson Med. 1995;34:537541.CrossRefGoogle ScholarPubMed
55.Hyde, JS, Biswal, B. Functionally related correlation in the noise. In: Moonen, CTW, Bandettini, PA, eds. Functional MRI. New York, NY: Springer; 1999:263275.Google Scholar
56.Li, Z, Wu Li, SJ. Comparison of the sensitivity between functional connectivity method and structural volume measurements in Alzheimer's disease. Proceedings of International Society of Magnetic Resonance in Medicine. 2000;1:320.Google Scholar
57.Bookheimer, SY, Strojwas, MH, Cohen, MS, Saunders, AM, Pericak-Vance, MA, Mazziotta, JC, et al.Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med. 2000;343:450456.CrossRefGoogle ScholarPubMed
58.McAllister, TW, Saykin, AJ, Flashman, LA, Sparling, MB, Johnson, SC, Guerin, SJ, et al.Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology. 1999;53:13001308.CrossRefGoogle ScholarPubMed
59.Christodoulou, C, DeLuca, J, Ricker, JH, Madigan, NK, Bly, BM, et al.Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;71:161168.CrossRefGoogle ScholarPubMed
60.Ricker, JH, Hillary, FG, DeLuca, J. Functionally activated brain imaging (O-15 PET and fMRI) in the study of learning and memory after traumatic brain injury. J Head Trauma Rehabil. 2001;16:191205.CrossRefGoogle Scholar
61.Davis, KD, Wood, ML, Crawley, AP, Mikulis, DJ. fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport. 1995;7:321325.CrossRefGoogle ScholarPubMed
62.Davis, KD, Taylor, SJ, Crawley, AP, Wood, ML, Mikulis, DJ. Functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol 1997;77:33703380.CrossRefGoogle ScholarPubMed
63.Kiriakopoulos, ET, Tasker, RR, Nicosia, S, Wood, ML, Mikulis, DJ. Functional magnetic resonance imaging: a potential tool for the evaluation of spinal cord stimulation: technical case report. Neurosurgery. 1997;41:501504.Google ScholarPubMed
64.Roux, FE, Ibarrola, D, Lazorthes, Y, Berry, I. Chronic motor cortex stimulation for phantom limb pain: a functional magnetic resonance imaging study: technical case report. Neurosurgery. 2001;48:681687.CrossRefGoogle ScholarPubMed
65.Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.Google Scholar
66.Callicott, JH, Ramsey, NF, Tallent, K, et al.Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology. 1998;18;186196.CrossRefGoogle Scholar
67.Weinberger, DR, Mattay, V, Callicott, J, et al.fMRI applications in schizophrenia research. Neuroimage. 1996;4(3 Pt 3):S118S126.CrossRefGoogle ScholarPubMed
68.Manoach, DS, Gollub, RL, Benson, ES, et al.Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry. 2000;48:99109.CrossRefGoogle ScholarPubMed
69.Drevets, WC, Videen, TO, Price, JL, Preskorn, SH, Carmichael, ST, Raichle, ME. A functional anatomical study of unipolar depression. J Neurosci. 1992;12:36283641.CrossRefGoogle ScholarPubMed
70.Sheline, YI, Barch, DM, Donelly, JM, Ollinger, JM, Synder, AZ, Mintun, MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry. 2001;50:651658.CrossRefGoogle ScholarPubMed
71.Breiter, HC, Rauch, SL. Functional MRI and the study of OCD: from symptom provocation to cognitive-behavioral probes of cortico-striatal systems and the amygdala. Neuroimage. 1996;4(3 Pt 3):S127S138.CrossRefGoogle Scholar
72.Rauch, SL, Dougherty, DD, Cosgrove, GR, et al.Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for obsessive compulsive disorder. Biol Psychiatry. 2001;50:659667.CrossRefGoogle ScholarPubMed
73.Rauch, SL, Whalen, PJ, Curran, T, et al.Probing striato-thalamic function in obsessive-compulsive disorder and Tourette syndrome using neuroimaging methods. Adv Neurol. 2001;85:207224.Google ScholarPubMed
74.Callicott, JH, Weinberger, DR. Neuropsychiatric dynamics: the study of mental illness using functional magnetic resonance imaging. Eur J Radiol. 1999;30:95104.CrossRefGoogle Scholar
75.McDowell, JE, Clementz, BA. Behavioral and brain imaging studies of saccadic performance in schizophrenia. Biol Psychol. 2001;57(1–3):522.CrossRefGoogle ScholarPubMed
76.Kindermann, SS, Karimi, A, Symonds, L, Brown, GG, Jeste, DV. Review of functional magnetic resonance imaging in schizophrenia. Schizophr Res. 1997;27(2–3):143156.CrossRefGoogle ScholarPubMed
77.Bachus, SE, Kleinman, JE. The neuropathology of schizophrenia. J Clin Psychiatry. 1996;57(suppl 11):7283.Google ScholarPubMed
78.Andreasen, NC, O'Leary, DS, et al.Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet. 1997;349:17301734.CrossRefGoogle ScholarPubMed
79.Carter, CS, Perlstein, W, Ganguli, R, Brar, J, Mintun, M, Cohen, JD. Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry. 1998;155:12851287.CrossRefGoogle ScholarPubMed
80.Goldberg, TE, Berman, KF, Fleming, K, et al.Uncoupling cognitive workload and prefrontal cortical physiology: a PET rCBF study. Neuroimage. 1998;7(4 Pt 1):296303.CrossRefGoogle ScholarPubMed
81.Callicott, JH, Bertolino, A, Mattay, VS, et al.Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex. 2000;10:10781092.CrossRefGoogle ScholarPubMed
82.Baxter, LR, Schwartz, JM, Phelps, ME, et al.Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry. 1989;46:243250.CrossRefGoogle ScholarPubMed
83.Drevets, WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res. 2000;126:413431.CrossRefGoogle ScholarPubMed
84.Mayberg, HS, Brannan, SK, Mahurin, RK, et al.Cingulate function in depression: a potential predictor of treatment response. Neuroreport. 1997;8:10571061.CrossRefGoogle ScholarPubMed
85.Kimbrell, TA, Little, JT, Dunn, RT, et al.Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry. 1999;46:16031613.CrossRefGoogle ScholarPubMed
86.Baxter, LR, Clark, EC, Iqbal, M, Ackermann, RF. Cortical-subcortical systems in the mediation of obsessive-compulsive disorder: Modeling the brain's mediation of a classic “neurosis.” In: Lichter, DG, Cummings, JL, ed. Frontal-Subcortical Circuits in Psychiatric and Neurological Disorders. New York, NY: Guilford Press; 2001:207230.Google Scholar