Article contents
Cross t-Intersecting Integer Sequences from Weighted Erdős–Ko–Rado
Published online by Cambridge University Press: 09 May 2013
Abstract
Let m,n and t be positive integers. Consider [m]n as the set of sequences of length n on an m-letter alphabet. We say that two subsets A⊂[m]n and B⊂[m]n cross t-intersect if any two sequences a∈A and b∈B match in at least t positions. In this case it is shown that if $m > (1-\frac 1{\sqrt[t]2})^{-1}$ then |A||B|≤(mn−t)2. We derive this result from a weighted version of the Erdős–Ko–Rado theorem concerning cross t-intersecting families of subsets, and we also include the corresponding stability statement. One of our main tools is the eigenvalue method for intersection matrices due to Friedgut [10].
Keywords
- Type
- Paper
- Information
- Copyright
- Copyright © Cambridge University Press 2013
References
- 8
- Cited by