No CrossRef data available.
Published online by Cambridge University Press: 22 June 2009
We prove that there exists a constant c such that, for any integer Δ, the Ramsey number of a bipartite graph on n vertices with maximum degree Δ is less than 2cΔn. A probabilistic argument due to Graham, Rödl and Ruciński implies that this result is essentially sharp, up to the constant c in the exponent. Our proof hinges upon a quantitative form of a hypergraph packing result of Rödl, Ruciński and Taraz.