Published online by Cambridge University Press: 01 May 2008
We obtain large-deviation approximations for the empirical distribution for a general family of occupancy problems. In the general setting, balls are allowed to fall in a given urn depending on the urn's contents prior to the throw. We discuss a parametric family of statistical models that includes Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac statistics as special cases. A process-level large-deviation analysis is conducted and the rate function for the original problem is then characterized, via the contraction principle, by the solution to a calculus of variations problem. The solution to this variational problem is shown to coincide with that of a simple finite-dimensional minimization problem. As a consequence, the large-deviation approximations and related qualitative information are available in more-or-less explicit form.