Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T05:10:33.669Z Has data issue: false hasContentIssue false

Simply Generated Non-Crossing Partitions

Published online by Cambridge University Press:  28 March 2017

IGOR KORTCHEMSKI
Affiliation:
CNRS, CMAP, École Polytechnique, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau CEDEX, France (e-mail: igor.kortchemski@normalesup.org)
CYRIL MARZOUK
Affiliation:
Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland (e-mail: cyril.marzouk@math.uzh.ch)

Abstract

We introduce and study the model of simply generated non-crossing partitions, which are, roughly speaking, chosen at random according to a sequence of weights. This framework encompasses the particular case of uniform non-crossing partitions with constraints on their block sizes. Our main tool is a bijection between non-crossing partitions and plane trees, which maps such simply generated non-crossing partitions into simply generated trees so that blocks of size k are in correspondence with vertices of out-degree k. This allows us to obtain limit theorems concerning the block structure of simply generated non-crossing partitions. We apply our results in free probability by giving a simple formula relating the maximum of the support of a compactly supported probability measure on the real line in terms of its free cumulants.

Type
Paper
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abraham, C. (2016) Rescaled bipartite planar maps converge to the Brownian map. Ann. Inst. H. Poincaré Probab. Statist. 52 575595.CrossRefGoogle Scholar
[2] Aldous, D. (1994) Triangulating the circle, at random. Amer. Math. Monthly 101 223233.CrossRefGoogle Scholar
[3] Arizmendi, O. (2012) Statistics of blocks in k-divisible non-crossing partitions. Electron. J. Combin. 19 47.CrossRefGoogle Scholar
[4] Arizmendi, O. and Vargas, C. (2012) Products of free random variables and k-divisible non-crossing partitions. Electron. Commun. Probab. 17 11.CrossRefGoogle Scholar
[5] Benaych-Georges, F. (2006) Taylor expansions of R-transforms: Application to supports and moments. Indiana Univ. Math. J. 55 465481.Google Scholar
[6] Bercovici, H. and Voiculescu, D. (1993) Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42 733773.Google Scholar
[7] Bernasconi, N., Panagiotou, K. and Steger, A. (2010) On properties of random dissections and triangulations. Combinatorica 30 627654.Google Scholar
[8] Bertoin, J. (1996) Lévy Processes, Vol. 121 of Cambridge Tracts in Mathematics, Cambridge University Press.Google Scholar
[9] Billingsley, P. (1999) Convergence of Probability Measures, second edition, Wiley Series in Probability and Statistics, Wiley.Google Scholar
[10] Björnberg, J. and Stefánsson, S. (2014) Recurrence of bipartite planar maps. Electron. J. Probab. 19 31.Google Scholar
[11] Chaumont, L. (1997) Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math. 121 377403.Google Scholar
[12] Curien, N. and Kortchemski, I. (2014) Random non-crossing plane configurations: A conditioned Galton–Watson tree approach. Random Struct. Alg. 45 236260.Google Scholar
[13] Dembo, A., Mörters, P. and Sheffield, S. (2005) Large deviations of Markov chains indexed by random trees. Ann. Inst. H. Poincaré Probab. Statist. 41 971996.Google Scholar
[14] Dershowitz, N. and Zaks, S. (1986) Ordered trees and noncrossing partitions. Discrete Math. 62 215218.Google Scholar
[15] Deutsch, E. and Noy, M. (2002) Statistics on non-crossing trees. Discrete Math. 254 7587.Google Scholar
[16] Devroye, L., Flajolet, P., Hurtado, F., Noy, M. and Steiger, W. (1999) Properties of random triangulations and trees. Discrete Comput. Geom. 22 105117.CrossRefGoogle Scholar
[17] Drmota, M., de Mier, A. and Noy, M. (2014) Extremal statistics on non-crossing configurations. Discrete Math. 327 103117.CrossRefGoogle Scholar
[18] Duquesne, T. (2003) A limit theorem for the contour process of conditioned Galton–Watson trees. Ann. Probab. 31 9961027.CrossRefGoogle Scholar
[19] Edelman, P. H. (1980) Chain enumeration and non-crossing partitions. Discrete Math. 31 171180.CrossRefGoogle Scholar
[20] Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.Google Scholar
[21] Gao, Z. and Wormald, N. C. (2000) The distribution of the maximum vertex degree in random planar maps. J. Combin. Theory Ser. A 89 201230.CrossRefGoogle Scholar
[22] Hiai, F. and Petz, D. (2000) The Semicircle Law, Free Random Variables and Entropy, Vol. 77 of Mathematical Surveys and Monographs, AMS.Google Scholar
[23] Janson, S. (2012) Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation. Probab. Surv. 9 103252.Google Scholar
[24] Janson, S. (2014) Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton–Watson trees. Random Struct. Alg. 48 57101.CrossRefGoogle Scholar
[25] Janson, S., Jonsson, T. and Stefánsson, S. Ö. (2011) Random trees with superexponential branching weights. J. Phys. A: Math. Theor. 44, 485002.Google Scholar
[26] Janson, S. and Stefánsson, S. Ö. (2015) Scaling limits of random planar maps with a unique large face. Ann. Probab. 43 10451081.Google Scholar
[27] Kortchemski, I. (2014) Random stable laminations of the disk. Ann. Probab. 42 725759.CrossRefGoogle Scholar
[28] Kreweras, G. (1972) Sur les partitions non croisées d'un cycle. Discrete Math. 1 333350.Google Scholar
[29] Le Gall, J.-F. and Miermont, G. (2011) Scaling limits of random planar maps with large faces. Ann. Probab. 39 169.Google Scholar
[30] Le Gall, J.-F. and Paulin, F. (2008) Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18 893918.Google Scholar
[31] Marckert, J.-F. and Panholzer, A. (2002) Noncrossing trees are almost conditioned Galton–Watson trees. Random Struct. Alg. 20 115125.CrossRefGoogle Scholar
[32] McCammond, J. (2006) Noncrossing partitions in surprising locations. Amer. Math. Monthly 113 598610.Google Scholar
[33] Meir, A. and Moon, J. W. (1978) On the altitude of nodes in random trees. Canad. J. Math. 30 9971015.Google Scholar
[34] Ortmann, J. (2012) Large deviations for non-crossing partitions. Electron. J. Probab. 17 34.Google Scholar
[35] Ortmann, J. (2013) Functionals of the Brownian bridge. In Séminaire de Probabilités XLV, Vol. 2078 of Lecture Notes in Mathematics, Springer, pp. 433458.Google Scholar
[36] Prodinger, H. (1983) A correspondence between ordered trees and noncrossing partitions. Discrete Math. 46 205206.Google Scholar
[37] Shi, Q. (2015) On the number of large triangles in the Brownian triangulation and fragmentation processes. Stochastic Process. Appl. 125 43214350.Google Scholar
[38] Speicher, R. (1994) Multiplicative functions on the lattice of noncrossing partitions and free convolution. Math. Ann. 298 611628.Google Scholar
[39] Stanley, R. P. (1999) Enumerative Combinatorics 2, Vol. 62 of Cambridge Studies in Advanced Mathematics, Cambridge University Press.Google Scholar
[40] Yano, F. and Yoshida, H. (2007) Some set partition statistics in non-crossing partitions and generating functions. Discrete Math. 307 31473160.Google Scholar