1. Introduction and the main result
Given an $L\in{\mathbb N}$, we consider spread-out lattice animals $A=(V_A,E_A)$, where the vertex set $V_A$ is a finite subset of $\mathbb{Z}^d$ and any pair of vertices in $V_A$ are connected by a path of spread-out edges $E_A\subset \{\{x,y\}\;:\;0\lt \|x-y\|\le L\}$; $\|\cdot \|$ is an arbitrary fixed norm on $\mathbb R^d$. A lattice tree is a lattice animal with no loops. Both models are statistical-mechanical models for branched polymers.
To investigate their statistical properties, we consider the following generating functions. Let
where $\mathbb{1}_{E}$ is the indicator function of $E$, being 1 or 0 depending on whether or not $E$ is true. The function $D$ will be used as a transition probability of the underlying random walk. Then, we define the weight function for a tree $T$ as
and similarly for a lattice animal $A$ as $W_p(A)$. For a finite set $X\subset \mathbb{Z}^d$, we denote by $\mathcal{T}_X$ (resp., $\mathcal{A}_X$) the set of lattice trees $T$ with $X\subset V_T$ (resp., lattice animals $A$ with $X\subset V_A$); if $X$ consists of a vertex or two, we simply write, e.g., $\mathcal{T}_o$ (for $X=\{o\}$; see Fig. 1) or $\mathcal{T}_{o,x}$ (for $X=\{o,x\}$; see Fig. 2). The generating functions we want to investigate are the 1-point and 2-point functions, defined respectively as
for lattice trees, and similarly defined for lattice animals. The susceptibility $\chi _p$ is the sum of the 2-point function, defined as
for lattice trees, and similarly for lattice animals. It has been known (see [Reference Madras and Slade18] and references therein) that there is a model-dependent critical point $p_{\textrm{c}}$ such that $\chi _p$ is finite if and only if $p\lt p_{\textrm{c}}$ and diverges as $p\uparrow p_{\textrm{c}}$. The goal of this paper is to reveal the asymptotics of $p_{\textrm{c}}$ as $L\uparrow \infty$ for both models.
The best estimate so far on $p_{\textrm{c}}$ for the spread-out model was achieved by Penrose [Reference Penrose23]. He investigated the growth constant, which is defined by the $n\uparrow \infty$ limit of the $n$th root of the number $t_n=\frac 1n\sum _{T\in \mathcal{T}_o}\mathbb{1}{\{|V_T|=n\}}$ of $n$-vertex unrooted lattice trees. Since $\{t_n\}_{n\in{\mathbb N}}$ is a supermultiplicative sequence, i.e., $t_{n+m}\ge t_n\,t_m$ (see, e.g., [Reference Klein16]), $\lim _{n\uparrow \infty }t_n^{1/n}$ exists and is asymptotically $e|\Lambda |+O(|\Lambda |^{5/7}\log |\Lambda |)$ as $|\Lambda |\uparrow \infty$ [Reference Penrose23]. Since $|E_T|=|V_T|-1$ for each lattice tree, we can rewrite $\chi _p$ as
Therefore, for large $|\Lambda |$,
which is true for all dimensions $d\ge 1$. Penrose also claimed in [Reference Penrose23, Section 3.1] that $p_{\textrm{c}}$ for lattice animals obeys the same bound, due to the result of Klarner [Reference Klarner15].
A weaker estimate, $p_{\textrm{c}}=1/e+o(1)$ as $L\uparrow \infty$ for all $d$ bigger than the critical dimension $d_{\textrm{c}}=8$, was obtained by Miranda and Slade [Reference Miranda and Slade20]. In fact, their main concern was to obtain $1/d$ expansions of $p_{\textrm{c}}$ for the nearest-neighbor models. In [Reference Miranda19, Reference Miranda and Slade21], they showed that,
as $|\Lambda |=2d\uparrow \infty$. The proof is based on the lace expansion for the 2-point function $\tau _p(x)$ and an expansion for the 1-point function $g_p$ based on inclusion-exclusion. Notice that the model-dependence appears only from the $O(|\Lambda |^{-2})$ term. This is due to unit squares that are in $g_p$ for lattice animals, but not in $g_p$ for lattice trees. The lace expansion has been successful in showing mean-field critical behaviour in high dimensions for various models, including lattice trees and lattice animals for $d\gt 8$ (e.g., [Reference Hara, Hofstad and Slade6, Reference Hara and Slade8, Reference Hara and Slade10]). The other models are self-avoiding walk for $d\gt 4$ (e.g., [Reference Brydges and Spencer2, Reference Hara, Hofstad and Slade6, Reference Hara and Slade9]), percolation for $d\gt 6$ (e.g., [Reference Hara, Hofstad and Slade6, Reference Hara and Slade7]), oriented percolation and the contact process for the spatial dimension $d\gt 4$ (e.g., [Reference Nguyen and Yang22, Reference Sakai24]), and the Ising and $\varphi ^4$ models for $d\gt 4$ (e.g., [Reference Brydges, Helmuth and Holmes1, Reference Sakai25–Reference Sakai27]).
For the nearest-neighbor lattice trees and lattice animals, in particular, Hara and Slade [Reference Hara, Hofstad and Slade6, Reference Hara and Slade8, Reference Hara and Slade10] show mean-field behaviour for both models in dimensions higher than an unspecified number bigger than $8$. In contrast, Fitzner and van der Hofstad [Reference Fitzner and van der Hofstad5] prove that $d\gt 16$ is enough for lattice trees, and $d\gt 17$ for lattice animals to exhibit mean-field behaviour. The proof is based on the so-called non-backtracking lace expansion (NoBLE) that is different from the standard lace expansion by Hara and Slade.
In [Reference Hofstad and Sakai12], van der Hofstad and the second-named author of the current paper applied the lace expansion to the spread-out models [defined by $D$ in equation (1.1)] of self-avoiding walk, percolation, oriented percolation and the contact process, and showed that, for all $d$ bigger than the respective critical dimension $d_{\textrm{c}}$,
as $L\uparrow \infty$, where 1 is the mean-field value, and the model-dependent constant $C$ has the following random-walk representation:
where $U^{*n}$ is the $n$-fold convolution in ${\mathbb R}^d$ of the uniform probability distribution $U$ on $\{x\in{\mathbb R}^d\;:\;\|x\|\le 1\}$. For example, if $\|x\|=\|x\|_\infty \;:\!=\;\max _j|x_j|$, then, for all $n\in{\mathbb N}$,
These quantities are the spread-out limit of the underlying random walk generated by $D$ [Reference Hofstad and Sakai12, Section 4]. For example, for $d\gt 4$,
where we have used the same notation $*$ to represent convolutions on $\mathbb{Z}^d$ as well. The error term $O(L^{-d-1})$ is due to Riemann-sum approximation.
We want to achieve a similar result for lattice trees and lattice animals, i.e., a random-walk representation for the difference between $p_{\textrm{c}}$ and its mean-field value $1/e$, and see how the model-dependence arises in it. In the rest of the paper, we will show the following:
Theorem 1.1. For both lattice trees and lattice animals with $d\gt 8$ and $L\uparrow \infty$,
where the model-dependent constant $C$ has the following random-walk representation:
The difference in $p_{\textrm{c}}$ already shows up in the first error term of order $L^{-d}$ for the spread-out models, while it appears in (1.7) from the second error term of order $d^{-2}$ for the nearest-neighbor models, as mentioned earlier. This is due to closed loops of length bigger than 2 in $g_p$ for lattice animals. The smallest among such loops for the spread-out model is of length 3 and of order $L^{-d}$, while that for the nearest-neighbor model is of length 4 and of order $d^{-2}$ (see Lemma 4.1 below). Identifying coefficients of the higher-order terms for the spread-out models may need more work since they are absorbed in the error term $O(L^{-d-1})$ in (1.12), which is inherent in Riemann-sum approximation, just as mentioned below (1.11).
The proof of the above theorem is based on the lace expansion for the 2-point function and detailed analysis of the 1-point function, similarly to the previous work by Miranda and Slade [Reference Miranda and Slade21]. The key to our analysis is to introduce a new base point $p_1$ defined in (2.1) below, as $p_1g_{p_1}=1$. It is to estimate various generating functions in terms of massless random walks. For the spread-out models of self-avoiding walk, percolation, oriented percolation and the contact process, van der Hofstad and Sakai [Reference Hofstad and Sakai12] use the base point $p_1=1$, because of the unity of the $1$-point function for those models. Since the analysis in terms of the underlying random walks is very simple, we do not have to know in detail the lace expansion; the exception is in Lemma 2.1 below, where we investigate the first lace-expansion coefficient $\hat \pi _p^{\scriptscriptstyle (1)}$ to prove $p_{\textrm{c}}-p_1=O(L^{-2d})$. However, the basic facts (summarized in Proposition 2.2 below) and a minimum definition about the lace-expansion coefficients should be enough to read the proof, which we hope makes this paper more accessible to wider audience.
Our method can be applied to the nearest-neighbor models as well to identify the coefficient of $(2d)^{-1}$, as we can use the same method (i.e., Lemma 2.1 below) to conclude $p_{\textrm{c}}-p_1=O(d^{-2})$, but this limits the accuracy our method can achieve. Therefore, to identify the higher-order coefficients, we may need investigate the lace-expansion coefficients at $p_c$ more carefully as in Miranda and Slade [Reference Miranda and Slade21].
The rest of the paper is organized as follows. In Section 2, we show that $p_{\textrm{c}}$ is close (up to order $L^{-2d}$) to $p_1$ that satisfies the identity $p_1g_{p_1}=1$, which is heavily used in the analysis in Sections 3 and 4. Section 3 is devoted to evaluating $g_{p_1}$ for lattice trees. The 1-point function is split into two parts, $G$ and $H$, which are investigated in Sections 3.1 and 3.2, respectively. Finally, in Section 4, we demonstrate how to evaluate the difference between lattice trees and lattice animals.
2. Results due to the lace expansion
In this section, we approximate $p_{\textrm{c}}$ by $p_1$ that is defined for both models by the identity
From now on, we frequently use
Lemma 2.1. For both lattice trees and lattice animals with $d\gt 8$ and $L\uparrow \infty$,
The key to the proof is the following collection of the lace-expansion results [Reference Hara, Hofstad and Slade6, Reference Liang17], in which we use
where $o\Longleftrightarrow x$ means that ($o=x$ or) there is at least one pair of edge-disjoint paths from $o$ to $x$ in an animal $A$. Let $\hat h_p$ denote the sum of $h_p(x)$ over $x\in \mathbb{Z}^d$:
Proposition 2.2 ([Reference Hara, Hofstad and Slade6, Reference Liang17]). For both lattice trees and lattice animals with $d\gt 8$, there is a model-dependent $L_0\lt \infty$ such that, for all $L\ge L_0$, the following holds for all $p\le p_{\textrm{c}}$:
1. The $1$-point function is bounded away from zero and infinity. In fact,
(2.6) \begin{align} 1\le g_p\le 4. \end{align}-
2. There are nonnegative lace-expansion coefficients $\pi _p^{\scriptscriptstyle (n)}(x)$, $n\in{\mathbb N}$, such that
(2.7) \begin{align} \exists K\lt \infty,\quad \forall x\in \mathbb{Z}^d,\quad \pi _p^{\scriptscriptstyle (n)}(x)\le \frac{KL^{-6}(K\beta )^{n-1}}{(\|x\|\vee L)^{2d-6}}, \end{align}and that, by defining $\pi _p(x)=\sum _{n\in{\mathbb N}}(\!-\!1)^n\pi _p^{\scriptscriptstyle (n)}(x)$, the recursion equation(2.8) \begin{align} \tau _p(x)&=g_p\delta _{o,x}+h_p(x)+\pi _p(x)\nonumber \\ &\quad +\sum _{u,v}\Big (g_p\delta _{o,u}+h_p(u)+\pi _p(u)\Big )\,pD(v-u)\, \tau _p(x-v) \end{align}holds for all $x\in \mathbb{Z}^d$.
Consequently, there is a $K'\lt \infty$ such that
where the latter means $\chi _p/(p_{\textrm{c}}-p)^{-1/2}$ is bounded away from 0 and $\infty$ as $p\uparrow p_{\textrm{c}}$, and
The above results for lattice trees are proven in [Reference Liang17] by following the same line of proof as in [Reference Hara, Hofstad and Slade6] and using the convolution bounds in [Reference Chen and Sakai4, Lemma 3.2] instead of the weaker ones in [Reference Hara, Hofstad and Slade6, Proposition 1.7]. The same strategy applies to lattice animals, and we refrain from showing details.
Consequently, for any $p\le p_{\textrm{c}}$,
Moreover, by subadditivity (i.e., forgetting edge-disjointness among paths from $o$ to $x$),
The identity (2.10) is obtained by summing (2.8) over $x\in \mathbb{Z}^d$, solving the resulting equation for $\chi _p$ and then using the fact that $\chi _p$ diverges as $p\uparrow p_{\textrm{c}}$. Substituting (2.11)–(2.12) to (2.10) yieldsFootnote 1
which is the starting point of the analysis.
Proof of Lemma 2.1. First we show $p_1\lt p_{\textrm{c}}$. Since $pg_p$ is increasing in $p$ with $p_1g_{p_1}=1$, it suffices to show $p_{\textrm{c}} g_{p_{\textrm{c}}}\gt 1$. By (2.6) and (2.14), it then suffices to show that $\hat \pi _{p_{\textrm{c}}}^{\scriptscriptstyle (1)}-\hat h_{p_{\textrm{c}}}$ is bounded from below by $\beta$ times a positive constant for large $L$. Here, and only here, we use the actual definition of the lace-expansion coefficient $\hat \pi _p^{\scriptscriptstyle (1)}$ (see, e.g., [Reference Hara and Slade8]). We can easily check that $\hat \pi _p^{\scriptscriptstyle (1)}$ for both models is larger than the sum of triangles consisting only of three distinct edges: $\hat \pi _p^{\scriptscriptstyle (1)}\ge |\Lambda |(|\Lambda |-1)(p/|\Lambda |)^3$, which is enough for lattice trees because $\hat h _p \equiv 0$. For lattice animals, we show below $\hat h_p\le \frac 14\hat \pi _p^{\scriptscriptstyle (1)}+O(\beta ^2)$ for $p \le p_c$ in high dimensions $d\gt 8$. The aforementioned sufficient condition for $p_{\textrm{c}} g_{p_{\textrm{c}}}\gt 1$ is now verified.
Next we show $p_{\textrm{c}}-p_1=O(\beta ^2)$ for lattice animals by induction. The same induction also works for lattice trees with $A=T$ and $\hat h_{p_c} \equiv 0$. Let $\{\ell _n\}_{n\in{\mathbb N}}$ be the following increasing sequence bounded above by 2:
Since $p_c=O(1)$ (see, e.g., (1.6) or [Reference Hara, Hofstad and Slade6, Proposition 2.2]) and $p_1g_{p_1}=p_{\textrm{c}}(g_{p_{\textrm{c}}}+\hat h_{p_{\textrm{c}}}+\hat \pi _{p_{\textrm{c}}})=1$, we have
which is bounded above by $-\hat \pi _{p_{\textrm{c}}}/g_{p_1}=O(\beta )$ [due to (2.11)], confirming $p_{\textrm{c}}-p_1=O(\beta ^{\ell _1})$.
Now we suppose $p_{\textrm{c}}-p_1=O(\beta ^{\ell _j})$. Notice that $g_{p_c}-g_{p_1}$ can be rewritten as
Solving this for $g_{p_{\textrm{c}}}-g_{p_1}$ yields
which is bounded above by $-\hat \pi _{p_{\textrm{c}}}=O(\beta )$ [due to (2.11)] for both models. By substituting (2.18) to (2.16), we obtain
Recall the definition of $F$ in (2.17). Since $(p_1/p_{\textrm{c}})^nW_{p_{\textrm{c}}}(A)=(p_{\textrm{c}}/p_1)^{|E_A|-n}W_{p_1}(A)$, which is also true for lattice trees, we have
By (2.19) and (2.20), we can estimate $p_c-p_1$ as
where, for the last inequality, we use $\chi _{p_1}\asymp (p_{\textrm{c}}-p_1)^{-1/2}$ for both models in dimensions $d\gt 8$. Applying the inductive hypothesis $p_c-p_1=O(\beta ^{\ell _j})$ to (2.21), we obtain $p_c-p_1=O(\beta ^{\ell _{j+1}})$, which completes the induction. Since $\lim _{j\uparrow \infty }\ell _j=2$, this proves $p_{\textrm{c}}-p_1=O(\beta ^2)$, as required.
Proof of $\hat h_p\le \frac 14\hat \pi _p^{\scriptscriptstyle (1)}+O(\beta ^2)$ for lattice animals. First we recall that
We split the sum into two depending on whether or not there are distinct vertices $y,z\in V_A$ such that $o\longleftrightarrow y$, $y\longleftrightarrow x$, $o\longleftrightarrow z$, $z\longleftrightarrow x$ and $y\longleftrightarrow z$ occur in $A$ edge-disjointly, i.e., those connections occur in distinct sets of $E_A$. (We note that, if $y=o$, for example, then we should interpret this as $o\longleftrightarrow x$, $o\Longleftrightarrow z$ and $z\longleftrightarrow x$ occurring edge-disjointly.) Intuitively,
Using submultiplicativity and the $x$-space bound in (2.9), we can show that the contribution from this case is $O(\beta ^2)$. On the other hand, if there are no such vertices $y,z\in V_A$, i.e.,
then there are exactly two edge-disjoint connections between $o$ and $x$, with two pivotal edges from $o$, say $\{o,u\},\{o,u'\}$, and two from $x$, say $\{v,x\},\{v',x\}$, one of which may coincide with either $\{o,u\}$ or $\{o,u'\}$, for the double connection $o\Longleftrightarrow x$ in $A$. Suppose that there is order among vertices in $\Lambda$. If $u\in \Lambda$ is earlier than $u'\in \Lambda$ in this order, we write $u\prec u'$. Let $\Lambda (x)=\{v\in V\;:\;v-x\in \Lambda \}$. Then, the contribution to $\hat h_p$ from (2.24) is bounded above by (see Fig. 3)
Since $\Lambda$ is symmetric with respect to the underlying lattice symmetry, the first and second terms are the same. Due to the same reason, the third term remains unchanged when the restriction $u\prec u'$ is replaced by $u'\prec u$. Therefore, (2.25) equals
Now we compare (2.26) with $\hat \pi _p^{\scriptscriptstyle (1)}$ for lattice animals, which is defined as (see Fig. 4)
where we have abused the notation $\overline \omega _0=o$ and $\underline \omega _{|\omega |+1}=x$. This can be bounded below by restricting the sum over $\omega$ to those satisfying $\underline \omega _1=o$ and $\overline \omega _{|\omega |}=x$ (so that $\mathcal{A}_{\overline \omega _0,\underline \omega _1}=\mathcal{A}_o$ and $\mathcal{A}_{\overline \omega _{|\omega |},\,\underline \omega _{|\omega |+1}}=\mathcal{A}_x$) and then by restricting the sum over $B_0\in \mathcal{A}_o$ to $B_0=\{o\}$ (so that $\mathbb{1}_{\{B_0\cap B_{|\omega |}\ne \varnothing \}}=\mathbb{1}_{\{o\in B_{|\omega |}\}}$) or restricting the sum over $B_{|\omega |}\in \mathcal{A}_x$ to $B_{|\omega |}=\{x\}$ (so that $\mathbb{1}_{\{B_0\cap B_{|\omega |}\ne \varnothing \}}=\mathbb{1}_{\{x\in B_0\}}$):
Those two terms are basically the same. Splitting the sum over $\omega$ into two depending on whether $|\omega |=1$ (so that $\omega =\{\omega _1\}$, where $\omega _1=(o,x)$) or $|\omega |\ge 2$ and then, for the latter, by summing over the animals $B_1,\dots,B_{|\omega |-1}$ (to form an animal $A_3\in \mathcal{A}_{\overline \omega _1,\,\underline \omega _{|\omega |}}$), we obtain
We further bound this below by restricting the sum over $B\in \mathcal{A}_{o,x}$ to smaller animals $B=(V_B,E_B)$ with either
(i) $V_B=V_{A_1}\cup V_{A_2}$, $E_B=E_{A_1}\cup \{(o,x)\}\cup E_{A_2}$ for some $A_1\in \mathcal{A}_o$, $A_2\in \mathcal{A}_x$ (as in the left and middle figures of Fig. 3), or
-
(ii) $V_B=V_{A_1}\cup V_{A_2}\cup V_{A_4}$, $E_B=E_{A_1}\cup \{(o,u')\}\cup E_{A_4}\cup \{(v',x)\}\cup E_{A_2}$ for some $A_1\in \mathcal{A}_o$, $A_2\in \mathcal{A}_x$, $u'\in \Lambda$, $v'\in \Lambda (x)$, $A_4\in \mathcal{A}_{u',v'}$ (as in the right figure of Fig. 3).
The contribution from (i) to the right-hand side of (2.29) is
while the contribution from (ii) is
Notice that the sum of (2.30) and (2.31) is four times as large as (2.26). This completes the proof of $\hat h_p\le \frac 14\hat \pi _p^{\scriptscriptstyle (1)}+O(\beta ^2)$.
3. Detailed analysis of the 1-point function for lattice trees
To complete the proof of Theorem 1.1, it remains to investigate $p_1=1/g_{p_1}$ (due to (2.1) and Lemma 2.1). In this section, we concentrate our attention to lattice trees and show the following:
Lemma 3.1. For lattice trees with $d\gt 8$ and $L\uparrow \infty$,
Consequently,
To prove Lemma 3.1, we first rewrite $g_{p_1}$ by identifying the connected neighbours $Y$ of the origin as
where, and from now on, $\sum _{Y\subset \Lambda }$ is the sum over sets $Y$ of distinct vertices of $\Lambda$ (we recall that $o$ is not included in $\Lambda$) and
for $Y=\{y_1,\dots,y_n\}$. By convention, $\prod _{u\ne v}\mathbb{1}_{\{V_{R_u}\cap V_{R_v}=\varnothing \}}$ is regarded as 1 when $|Y|=1$. Let (see Fig. 5)
where
We investigate those $G$ and $H$ in Sections 3.1 and 3.2, respectively (cf., Lemmas 3.2 and 3.4 below).
3.1 Detailed analysis of $G$
From now on, we frequently use
where $D^{*0}(x)=\delta _{o,x}$ by convention. The following is what we are going to show in this section:
Lemma 3.2. For lattice trees with $d\gt 8$ and $L\uparrow \infty$,
Proof. Since $p_1g_{p_1}=1$, we can rewrite $G$ as
If we replace $\prod _{y\in Y}(1-\tau _{p_1}(y)/g_{p_1})$ by 1, then we obtain
Since $k\log (1+1/k)=1-1/(2k)+O(k^{-2})$ as $k\uparrow \infty$, and since $|\Lambda |^{-1}=D^{*2}(o)$, we obtain
Next we consider the remainder, which is
Changing the order of sums yields
where
We have made use of reflection symmetry in (3.14)–(3.16), such as $\tau _p(\!-\!y)=\tau _p(y)$ and $D(\!-\!y)=D(y)$; we will frequently the symmetry without mentioning each time. To estimate $G_1$ and $G_2$, we use the following lemma, which will be proven after the proof of Lemma 3.2 is completed.
Lemma 3.3. For any $d\gt 2$ and $x\ne o$, the lattice tree 2-point function satisfies
Remark. The right-hand side of ( 3.17) is diagrammatically represented by
where an unslashed (resp., slashed) line represents $S_{\ge 0}$ (resp., $S_{\ge 1}$) and an unlabelled vertex is summed over $\mathbb{Z}^d$. Due to translation invariance, we can change the order of terms in ( 3.17) for a given $x\ne o$. Then ( 3.18) is also equal to
These diagrammatic representations will be used in the proof of Lemma 3.4 below.
First we estimate $G_2$. By the first inequality in (3.17) and the heat-kernel bound (see, e.g., [Reference Chen and Sakai3, (1.6)]):
we can show
Therefore,
Next we estimate $G_1$ in (3.15). By using (3.17), we have
By the heat-kernel bound (3.20), we can estimate each term as
so that
Therefore, by (3.12),
Summarizing (3.12), (3.14), (3.22) and (3.27), we complete the proof of Lemma 3.2.
Proof of Lemma 3.3. First we recall
Since a tree $T\in \mathcal{T}_{o,x}$ can be divided into a unique path $\omega =(\omega _0,\omega _1,\dots,\omega _{|\omega |})$ from $\omega _0=o$ to $\omega _{|\omega |}=x$, called a backbone, and disjoint subtrees $R_j\in \mathcal{T}_{\omega _j}$, called ribs (see Fig. 2), we can rewrite the above expression as
If we replace the indicator $\prod _{s\lt t}\mathbb{1}_{\{V_{R_s}\cap V_{R_t}=\varnothing \}}$ by 1, then we obtain
Next we consider the remainder. Since $1-\prod _{j=1}^na_j\le \sum _{j=1}^n(1-a_j)$ as long as $0\le a_j\le 1$ for all $j$, we can bound the remainder as
If $V_{R_s}\cap V_{R_t}\ne \varnothing$, then there must be a $w\in \mathbb{Z}^d$ that is shared by those two ribs. Therefore, the remainder is further bounded above as
The proof of (3.17) is completed by applying (3.29)–(3.30) to $(\tau _{p_1}/g_{p_1})^{*2}$ in the above bound.
3.2 Detailed analysis of $H$
To complete the proof of Lemma 3.1, it suffices to show the following:
Lemma 3.4. For lattice trees with $d\gt 8$ and $L\uparrow \infty$,
Proof. Recall the definition (3.7) of $H$:
First we split the indicator $1-\prod _{u\ne v}\mathbb{1}_{\{V_{R_u}\cap V_{R_v}=\varnothing \}}$ in (3.7) by introducing order among pairs of distinct vertices in $\Lambda$, called bonds. If a bond $b$ is earlier than another bond $b'$ in that order, we denote it by $b\lt b'$. Then we have
where the second sum on the right is zero when $|Y|=2$. Let $H_1$ be the contribution from the first sum on the right:
We will later show [after the derivation of (3.33); see (3.54)] that
Next we investigate $H_1$. Let $H'_{1}$ be the contribution from the case of $|Y|=2$:
By subadditivity, we already know that $H'_{1}=O(\beta )$ for $d\gt 4$. By changing the order of sums, we can rewrite $H_1-H'_{1}$ as
Similarly to the proof of Lemma 3.2, we can show that the last line is estimated as
Therefore,
or equivalently
Next we investigate $H'_{1}$. To do so, we first rewrite $\mathbb{1}_{\{V_{R_u}\cap V_{R_v}\ne \varnothing \}}$ in (3.38) by introducing order among vertices in $\mathbb{Z}^d$. For a vertex set $V$ and an element $x\in V$, we denote by $V^{\lt x}$ the set of vertices in $V$ that are earlier than $x$ in that order. By identifying the earliest element $x$ among $V_{R_u}$ that is also in $V_{R_v}$ (so that $V^{\lt x}_{R_u}\cap V_{R_v}=\varnothing$), we can rewrite $\mathbb{1}_{\{V_{R_u}\cap V_{R_v}\ne \varnothing \}}$ as
Let ${H'_{1}}'$ be the contribution from the first sum in the last line:
where $\tau _p^{\scriptscriptstyle (3)}(o,u,x)$ is a 3-point function, defined as
We will later show that
Finally we investigate ${H'_{1}}'$. The dominant contribution to ${H'_{1}}'$ comes from the product of 2-point functions:
where we have used the identity $\tau _p(o)=g_p$. We will later show that the other contribution to ${H'_{1}}'$ which involves 3-point functions is estimated as
By Lemma 3.3, the first term in (3.47) is estimated as
where a gap next to the origin in the last diagram represents $1/|\Lambda |$. By translation invariance and (3.24)–(3.25), the last term is bounded above by
Similarly, the second term in (3.47) is estimated as
By Lemma 3.3, (3.19) and the translation invariance, the last term of (3.51) is bounded above by
Therefore,
Summarizing all the above estimates, we arrive at
Proof of (3.37): bounding $H_2$. First we recall that $H_2$ is the contribution from the second sum on the right of (3.35):
which is nonnegative. Since we get an upper bound
in a same manner as (3.35), we can bound $H_2$ as
Since $\{u,v\}\ne \{u',v'\}$, the union $\{u,v\}\cup \{u',v'\}$ consists of either three or four distinct vertices. We denote the contribution from the former by $H_{2,3}$, and that from the latter by $H_{2,4}$ and then we obtain
First we investigate $H_{2,4}$, which is bounded as (see Fig. 6)
By (2.1) (i.e., $p_1g_{p_1}=1$), the last line is equal to
Then, by ignoring the constraint that $\{u,v\}$ and $\{u',v'\}$ are disjoint pairs and using the trivial inequality $\mathbb{1}_{\{V_{R_u}\cap V_{R_v}\ne \varnothing \}}\le \sum _x\mathbb{1}_{\{x\in V_{R_u}\cap V_{R_v}\}}$ as well as the relation $\mathcal{T}_{u,x}\setminus \mathcal{T}_o\subset \mathcal{T}_{u,x}$, $H_{2,4}$ is further bounded above as
Finally, by using $\tau _{p_1}(u-x)/g_{p_1}\le S_{\ge 1}(u-x)$ for $x\ne u$ [cf., the first inequality in (3.17)] and $\tau _p(o)=g_p$ for $x=u$, we arrive at
Next we investigate $H_{2,3}$, which is bounded in a similar way to (3.61) as (see Fig. 7)
Due to submultiplicativity, we can bound $\tau _p^{\scriptscriptstyle (3)}(u,x,x')$ as
Then, by using $\tau _{p_1}(u-x)/g_{p_1}\le S_{\ge 1}(u-x)$ for $x\ne u$ and $\tau _p(o)=g_p$ for $x=u$, we can bound the sum in (3.63) as
This together with (3.58) and (3.62) implies
as required.
Proof of (3.46): bounding ${H'_{2}}'$. First we recall that ${H'_{2}}'$ is the contribution to $H'_{1}$ from the second sum on the right of (3.43):
Notice that
By the inclusion relation $\mathcal{T}_{u,x,x'}\setminus \mathcal{T}_o\subset \mathcal{T}_{u,x,x'}$ and using (3.64), (2.1) and (3.17), we can bound ${H'_{2}}'$ as (see Fig. 8)
Shifting the variables by $-x'$ and changing the variables $x-x',y-x',y'-x'$ to the new ones $w,z,z'$, respectively, we can rewrite the above sum as
which is bounded above by
as required.
Proof of (3.48): bounding ${H'_{2}}''$. First we recall that ${H'_{2}}''$ is the contribution to ${H'_{1}}'$ which involves 3-point functions [cf., (3.44)]:
By (2.1), (3.64) and (3.17), we can readily conclude that
as required.
4. Difference between lattice trees and lattice animals
Finally we prove Theorem 1.1 for lattice animals. Recall that, by Lemma 2.1, it suffices to investigate $p_1=1/g_{p_1}$ [cf., (2.1)]. The following is the key lemma:
Lemma 4.1. For lattice animals with $d\gt 8$ and $L\uparrow \infty$,
Consequently,
Proof. As a first step, we want a similar decomposition to (3.3) for lattice animals. To do so, we identify the connected neighbours $Y$ of the origin, just as done in (3.3). Then, we introduce $\Gamma (Y)$, which is the set of all partitions of $Y$. For example, if $Y=\{1,2,3\}$, then
For a partition $\gamma \in \Gamma (Y)$, we denote by $|\gamma |$ the number of sets in $\gamma$, so that $\gamma =\{\gamma _j\}_{j=1}^{|\gamma |}$. We can rewrite $g_{p_1}$ as
The contribution from the maximum partition $\bar \gamma =\{\{y\}\}_{y\in Y}$ (i.e., $|\bar \gamma |=|Y|$) is equal to (3.3) (with $\mathcal{T}$ replaced by $\mathcal{A}$) and can be decomposed into $G$ and $H$ as in (3.5) (with $R_y$ regarded as animals instead of trees). Let $I$ be the contribution from the remaining partitions $\gamma \in \Gamma (Y)$ with $|\gamma |\lt |Y|$, which is zero for lattice trees:
To evaluate $G, H$ and $I$ for lattice animals, we cannot apply Lemma 3.3, which is a powerful tool for lattice trees to identify the coefficients of $\beta$ as well as to estimate the error terms of $O(\beta ^2)$. For the latter purpose for lattice animals, we will use the infrared bound (2.9) (and monotonicity in $p$, i.e., $\tau _{p_1}\le \tau _{p_{\textrm{c}}}$); for the former purpose, we will use the following bounds that correspond to (3.26), (3.49) and (3.51), respectively:
Lemma 4.2. For lattice animals with $d\gt 8$ and $L\uparrow \infty$,
We will prove Lemma 4.2 after the proof of Lemma 4.1 is completed.
Now we resume the proof of Lemma 4.1 assuming the bounds in Lemma 4.2. First we recall $G=G_0+G_1+G_2$ [cf., (3.14)], where $G_0$ is independent of the models and estimated as (3.12); $G_1$ is defined as (3.15) and here we use (4.6) to show (3.27); $G_2$ is defined as (3.16) and obeys the same bound as (3.22). As a result, Lemma 3.2 also holds for lattice animals. Similarly, we can show $H=e({H'_{1}}''+{H'_{2}}''-{H'_{2}}'-H_2)+O(\beta ^2)$ [cf., (3.37), (3.42), (3.46) and (3.48)], where ${H'_{1}}''$ is defined in (3.47) and here we use (4.7)–(4.8) to show (3.53); $H_2$ is bounded by $H_{2,3}+H_{2,4}$, and $H_{2,3}$ and $H_{2,4}$ are further bounded as (3.59)–(3.61) and (3.63)–(3.65) (with $\mathcal{T}$ replaced by $\mathcal{A}$), and here we use the infrared bound (2.9) and the convolution bound on power functions [Reference Chen and Sakai4, Lemma 3.2(i)] to show $H_2=O(\beta ^2)$, such as
Similarly we can show that ${H'_{2}}'$ and ${H'_{2}}''$ are both $O(\beta ^2)$ by using the infrared bound and the convolution bound, instead of bounding $\tau _{p_1}/g_{p_1}$ by $S_{\ge 0}$ or $S_{\ge 1}$, just as done for lattice trees. As a result, Lemma 3.4 also holds for lattice animals.
Next we investigate $I$, which is unique for lattice animals. Let $I_1$ be the contribution from $\gamma \in \Gamma (Y)$ with $|\gamma |=|Y|-1$, i.e., consisting of a pair $\{u,v\}$ and $|Y|-2$ singletons $\{y\}_{y\in Y\setminus \{u,v\}}$:
where an empty product is regarded as 1. The dominant contribution to $I_1$, denoted $I'_1$, comes from when the last line is replaced by 1. By the tree-graph inequality (3.64), which is also true for lattice animals due to subadditivity, and then using the infrared bound (2.9), it is estimated as (see Fig. 9)
On the other hand, by using $1-ab\le (1-a)+(1-b)$ for any $a,b\in \{0,1\}$, we can bound the difference $I'_1-I_1\, (\ge 0)$ as
This is $O(\beta ^2)$, as the contribution from the former (resp., latter) sum in the last line can be estimated in a similar way to showing $H_{2,3}=O(\beta ^2)$ (resp., $H_{2,4}=O(\beta ^2)$); see Fig. 10.
As a result,
Finally we estimate the difference $I-I_1$:
Since $|\gamma |\le |Y|-2$, there are two possibilities: (i) there is a set in $\gamma$ which includes at least three distinct neighbours of the origin, or (ii) there are at least two disjoint sets in $\gamma$ both of which include exactly two distinct neighbours of the origin. Therefore,
where $I_3$ and $I_2$ are the contributions from $\mathbb{1}_{\{\exists j,\;|\gamma _j|\ge 3\}}$ and $\mathbb{1}_{\{\exists i\ne j,\;|\gamma _i|=|\gamma _j|=2\}}$, respectively.
For $I_2$, we split the set $Y$ of neighbours of the origin into $U$, $V$ and $Y'=Y\setminus (U\cup V)$, where $U\cap V=\varnothing$ and $|U|=|V|=2$. Partially ignoring the avoidance constraint among animals, we can bound $I_2$ as
Notice that the second line is almost identical to $g_{p_1}$; the only difference is the domain of summation over $Y'$, and therefore it is bounded above by $g_{p_1}$. Since $p_1g_{p_1}=1$, we obtain
For $I_3$, we split the set $Y$ into $X$ and $Y'=Y\setminus X$, where $X$ includes at least 3 distinct vertices $x,y,z\in \Lambda$. Again, by partially ignoring the avoidance constraint among animals, we can bound $I_3$ as
Notice again that the second line is bounded above by $g_{p_1}$. Using the relation $\mathcal{A}_X\setminus \mathcal{A}_o\subset \mathcal{A}_{x,y,z}$ and splitting $X$ into $\{x,y,z\}$ and $X'=X\setminus \{x,y,z\}$, we obtain
By the tree-graph inequality (3.64), we can show that
hence $I_3=O(\beta ^2)$. This completes the proof of $I=\frac 12S_{\ge 3}(o)+O(\beta ^2)$, hence the proof of Lemma 4.1.
Proof of Lemma 4.2. First we prove (4.6). By the inverse Fourier transform, we have the rewrite
Notice that the Fourier transform of the recursion equation (2.8) yields
We use this identity at $p_1=1/g_{p_1}$. Let
Thanks to the symmetry, the Fourier transform $\hat H(k)$ is real. Moreover, by (2.11)–(2.12), we can show that, for $d\gt 8$ and $L\gg 1$, $|\hat H(k)|=O(\beta )$ uniformly in $k$. Then, we can rewrite $\hat \tau _{p_1}(k)/g_{p_1}$ as
Applying this to (4.21) yields the main term $S_{\ge 2}(o)$ as
It remains to show that the second term on the right is $O(\beta ^2)$. To do so, we want an effective bound on $\hat F(k)$. We will show at the end of the proof that, for $d\gt 8$ and $L\gg 1$, there is an $L$-independent constant $C\lt \infty$ such that
uniformly in $k$. However, this results in a weaker bound than (4.6), because $\int \frac{|\hat D(k)|}{(1-\hat D(k))^2} \frac{\textrm{d}^dk}{(2\pi )^d}=O(\beta ^{1/2})$. Instead, we first rewrite $\hat F(k)$ as
Then, the second term on the right of (4.25) equals
Notice that, due to the identity (4.27), we have $\hat D(k)^2$ in the numerator of the second integrand in (4.28). The first term is readily bounded by $\|D*S_{\ge 0}^{*2}\|_\infty \hat H(0)=O(\beta ^2)$. For the second term, we use $|\hat H(k)|=O(\beta )$ and (4.26) to obtain that
This completes the proof of (4.6).
We can also prove (4.7)–(4.8) in a similar manner by assuming (4.26). Hence we here prove only (4.7). By the inverse Fourier transform, we can rewrite the sum in (4.7) as
Then, by the identity (4.24), we can extract the main term $\frac 12S_{\ge 3}(o)$ as
Similarly to (4.29), the second term is bounded as
hence the completion of the proof of (4.7).
Finally we prove the inequality (4.26), for $\|k\|\ge \frac 1L$ and $\|k\|\le \frac 1L$ separately. We begin with the former case. It is known (cf., e.g., [Reference Hofstad and Sakai12]) that our $D$ satisfies [Reference van der Hofstad and Slade14, Assumption D]; in particular, there is an $L$-independent constant $\eta \in (0,1)$ such that
Since $|\hat H(k)|=O(\beta )$, we obtain that, for $L\gg 1$,
hence
It remains to show that $\hat F(k)$ is bounded above by a multiple of $(1-\hat D(k))^{-1}$ uniformly in $\|k\|\le \frac 1L$. We note that
Since $-\hat H(0)$ is bounded below by a positive multiple of $\beta$ (as explained in the beginning of the proof of Lemma 2.1), ignoring this term yields a lower bound on $\hat F(k)^{-1}$. Moreover, since $|k\cdot x|\le \|k\|\|x\|\le 1$ for $x\in \Lambda$ and $\|k\|\le \frac 1L$, and since $1-\cos t\ge \frac 2{\pi ^2}t^2$ for $|t|\le 1$, there is a $c\gt 0$ such that
On the other hand, by $1-\cos t\le \frac 12t^2$ for any $t$ and using the $x$-space bounds (2.7) and (2.12), we have
Therefore, by taking $L$ sufficiently large, $\hat F(k)^{-1}$ is bounded below by a positive multiple of $1-\hat D(k)$, uniformly in $\|k\|\le \frac 1L$. Combined with (4.35), this completes the proof of the inequality (4.26), hence the completion of the proof of Lemma 4.2.
Acknowledgements
This work was supported by JSPS KAKENHI Grant Number 18K03406. We are grateful to Yinshuang Liang for working together in the early stage of this project. We would also like to thank Gordon Slade for comments to an earlier version of this paper. We are grateful to the two anonymous referees for thorough reviewing and many valuable suggestions to the previous version of the manuscript.