Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T09:56:12.556Z Has data issue: false hasContentIssue false

Bounding the Number of Common Zeros of Multivariate Polynomials and Their Consecutive Derivatives

Published online by Cambridge University Press:  03 August 2018

O. GEIL
Affiliation:
Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark (e-mail: olav@math.aau.dk)
U. MARTÍNEZ-PEÑAS
Affiliation:
Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark (e-mail: olav@math.aau.dk) Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada (e-mail: umberto@comm.utoronto.ca)

Abstract

We upper-bound the number of common zeros over a finite grid of multivariate polynomials and an arbitrary finite collection of their consecutive Hasse derivatives (in a coordinate-wise sense). To that end, we make use of the tool from Gröbner basis theory known as footprint. Then we establish and prove extensions in this context of a family of well-known results in algebra and combinatorics. These include Alon's combinatorial Nullstellensatz [1], existence and uniqueness of Hermite interpolating polynomials over a grid, estimations of the parameters of evaluation codes with consecutive derivatives [20], and bounds on the number of zeros of a polynomial by DeMillo and Lipton [8], Schwartz [25], Zippel [26, 27] and Alon and Füredi [2]. As an alternative, we also extend the Schwartz-Zippel bound to weighted multiplicities and discuss its connection to our extension of the footprint bound.

Type
Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alon, N. (1999) Combinatorial Nullstellensatz. Combin. Probab. Comput. 8 729.Google Scholar
[2] Alon, N. and Füredi, Z. (1993) Covering the cube by affine hyperplanes. European J. Combin. 14 7983.Google Scholar
[3] Ball, S. and Serra, O. (2009) Punctured combinatorial Nullstellensätze. Combinatorica 29 511522.Google Scholar
[4] Bishnoi, A., Clark, P. L., Potukuchi, A. and Schmitt, J. R. (2018) On zeros of a polynomial in a finite grid. Combin. Probab. Comput. 27 310333.Google Scholar
[5] Bruen, A. A. (1992) Polynomial multiplicities over finite fields and intersection sets. J. Combin. Theory Ser. A 60 1933.Google Scholar
[6] Clark, P. L. (2014) The combinatorial Nullstellensätze revisited. Electron. J. Combin. 21 117.Google Scholar
[7] Cox, D., Little, J. and O'Shea, D. (2007) Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer.Google Scholar
[8] DeMillo, R. A. and Lipton, R. J. (1978) A probabilistic remark on algebraic program testing. Inform. Process. Lett. 7 193195.Google Scholar
[9] Dvir, Z., Kopparty, S., Saraf, S. and Sudan, M. (2013) Extensions to the method of multiplicities, with applications to Kakeya sets and mergers. SIAM J. Comput. 42 23052328.Google Scholar
[10] Gasca, M. and Sauer, T. (2000) Polynomial interpolation in several variables. Adv. Comput. Math. 12 1377.Google Scholar
[11] Geil, O. and Høholdt, T. (2000) Footprints or generalized Bezout's theorem. IEEE Trans. Inform. Theory 46 635641.Google Scholar
[12] Geil, O. and Thomsen, C. (2013) Weighted Reed–Muller codes revisited. Des. Codes Cryptogr. 66 195220.Google Scholar
[13] Geil, O. and Thomsen, C. (2017) More results on the number of zeros of multiplicity at least r. Discrete Math. 340 10281038.Google Scholar
[14] Hasse, H. (1936) Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. J. Reine Angew. Math. 175 5054.Google Scholar
[15] Hirschfeld, J. W. P., Korchmaros, G. and Torres, F. (2008) Algebraic Curves over a Finite Field, Princeton University Press.Google Scholar
[16] Høholdt, T. (1998) On (or in) the Blahut footprint. In Codes, Curves, and Signals: Common Threads in Communications (Vardy, A., ed.), Springer, pp. 37.Google Scholar
[17] Høholdt, T., van Lint, J. H. and Pellikaan, R. (1998) Algebraic geometry codes. In Handbook of Coding Theory (Pless, V. S. and Huffman, W. C., eds), Elsevier, Vol. 1, pp. 871961.Google Scholar
[18] Huffman, W. C. and Pless, V. (2003) Fundamentals of Error-Correcting Codes, Cambridge University Press.Google Scholar
[19] Kopparty, S. (2015) List-decoding multiplicity codes. Theory Comput. 11 149182.Google Scholar
[20] Kopparty, S., Saraf, S. and Yekhanin, S. (2014) High-rate codes with sublinear-time decoding. J. Assoc. Comput. Mach. 61 28.Google Scholar
[21] Kós, G. and Rónyai, L. (2012) Alon's Nullstellensatz for multisets. Combinatorica 32 589605.Google Scholar
[22] Lorentz, R. A. (2000) Multivariate Hermite interpolation by algebraic polynomials: A survey. J. Comput. Appl. Math. 122 167201.Google Scholar
[23] Michałek, M. (2010) A short proof of combinatorial Nullstellensatz. Amer. Math. Monthly 117 821823.Google Scholar
[24] Pellikaan, R. and Wu, X.-W. (2004) List decoding of q-ary Reed–Muller codes. IEEE Trans. Inform. Theory 50 679682. Extended version: http://www.win.tue.nl/~ruudp/paper/43-exp.pdfGoogle Scholar
[25] Schwartz, J. T. (1980) Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27 701717.Google Scholar
[26] Zippel, R. (1979) Probabilistic algorithms for sparse polynomials. In Proc. International Symposium on Symbolic and Algebraic Computation (EUROSAM '79), Springer, pp. 216–226.Google Scholar
[27] Zippel, R. (1989) An explicit separation of relativised random and polynomial time and relativised deterministic polynomial time. Technical report, Cornell University, Ithaca, NY, USA.Google Scholar