Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T16:25:29.484Z Has data issue: false hasContentIssue false

Completing a (k − 1)-Assignment

Published online by Cambridge University Press:  01 July 2007

SVANTE LINUSSON
Affiliation:
Department of Mathematics, KTH, SE-100 44 Stockholm, Sweden (e-mail: linusson@math.kth.se)
JOHAN WÄSTLUND
Affiliation:
Department of Mathematics, Linköping University, 581 83 Linköping, Sweden (e-mail: jowas@mai.liu.se)

Abstract

We consider the distribution of the value of the optimal k-assignment in an m × n matrix, where the entries are independent exponential random variables with arbitrary rates. We give closed formulas for both the Laplace transform of this random variable and for its expected value under the condition that there is a zero-cost (k − 1)-assignment.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aldous, D. (1992) Asymptotics in the random assignment problem. Probab. Theory Related Fields 93 507534.CrossRefGoogle Scholar
[2]Aldous, D. (2001) The ζ(2) limit in the random assignment problem. Random Struct. Alg. 18 381418.CrossRefGoogle Scholar
[3]Alm, S. E. and Sorkin, G. B. (2002) Exact expectations and distributions in the random assignment problem. Combin. Probab. Comput. 11 217248.CrossRefGoogle Scholar
[4]Buck, M. W., Chan, C. S. and Robbins, D. P. (2002) On the expected value of the minimum assignment. Random Struct. Alg. 21 3358.CrossRefGoogle Scholar
[5]Coppersmith, D. and Sorkin, G. B. (1999) Constructive bounds and exact expectations for the random assignment problem. Random Struct. Alg. 15 133144.3.0.CO;2-S>CrossRefGoogle Scholar
[6]Coppersmith, D. and Sorkin, G. B. (2002) On the expected incremental cost of a minimum assignment. In Contemporary Combinatorics (Bollobás, B., ed.), Vol. 10 of Bolyai Society Mathematical Studies, Springer.Google Scholar
[7]Eriksson, H., Eriksson, K. and Sjöstrand, J. (2003) Exact expectations for random graphs and assignments. Combin. Probab. Comput. 12 401412.CrossRefGoogle Scholar
[8]Linusson, S. and Wästlund, J. A generalization of the random assignment problem. arXiv:math.CO/0006146.Google Scholar
[9]Linusson, S. and Wästlund, J. (2004) A proof of Parisi's conjecture on the random assignment problem. Probab. Theory Related Fields 128 419440.CrossRefGoogle Scholar
[10]Lovász, L. and Plummer, M. D. (1986) Matching Theory, North-Holland.Google Scholar
[11]Nair, C., Prabhakar, B. and Sharma, M. (2003) Proofs of the Parisi and Coppersmith–Sorkin random assignment conjectures. Random Struct. Alg. 27 413444.CrossRefGoogle Scholar
[12]Parisi, G. (1998) A conjecture on random bipartite matching. arXiv:cond-mat/9801176.Google Scholar
[13]Stanley, R. P. (1986/1997) Enumerative Combinatorics, Vol. 1, Wadsworth & Brooks/Cole (1986) and Cambridge University Press (1997).CrossRefGoogle Scholar
[14]Wästlund, J. (2005) A proof of a conjecture of Buck, Chan and Robbins on the expected value of the minimum assignment. Random Struct. Alg. 26 237251.CrossRefGoogle Scholar