Published online by Cambridge University Press: 02 February 2012
A family of sets is said to be intersecting if A ∩ B ≠ ∅ for all A, B ∈ . It is a well-known and simple fact that an intersecting family of subsets of [n] = {1, 2, . . ., n} can contain at most 2n−1 sets. Katona, Katona and Katona ask the following question. Suppose instead ⊂ [n] satisfies || = 2n−1 + i for some fixed i > 0. Create a new family p by choosing each member of independently with some fixed probability p. How do we choose to maximize the probability that p is intersecting? They conjecture that there is a nested sequence of optimal families for i = 1, 2,. . ., 2n−1. In this paper, we show that the families [n](≥r) = {A ⊂ [n]: |A| ≥ r} are optimal for the appropriate values of i, thereby proving the conjecture for this sequence of values. Moreover, we show that for intermediate values of i there exist optimal families lying between those we have found. It turns out that the optimal families we find simultaneously maximize the number of intersecting subfamilies of each possible order.
Standard compression techniques appear inadequate to solve the problem as they do not preserve intersection properties of subfamilies. Instead, our main tool is a novel compression method, together with a way of ‘compressing subfamilies’, which may be of independent interest.