Article contents
Computing the Partition Function for Perfect Matchings in a Hypergraph
Published online by Cambridge University Press: 17 October 2011
Abstract
Given non-negative weights wS on the k-subsets S of a km-element set V, we consider the sum of the products wS1 ⋅⋅⋅ wSm over all partitions V = S1 ∪ ⋅⋅⋅ ∪Sm into pairwise disjoint k-subsets Si. When the weights wS are positive and within a constant factor of each other, fixed in advance, we present a simple polynomial-time algorithm to approximate the sum within a polynomial in m factor. In the process, we obtain higher-dimensional versions of the van der Waerden and Bregman–Minc bounds for permanents. We also discuss applications to counting of perfect and nearly perfect matchings in hypergraphs.
- Type
- Paper
- Information
- Copyright
- Copyright © Cambridge University Press 2011
References
- 9
- Cited by