No CrossRef data available.
Article contents
Counting higher order tangencies for plane curves
Part of:
Discrete geometry
Published online by Cambridge University Press: 26 November 2019
Abstract
We prove that n plane algebraic curves determine O(n(k+2)/(k+1)) points of kth order tangency. This generalizes an earlier result of Ellenberg, Solymosi and Zahl on the number of (first order) tangencies determined by n plane algebraic curves.
MSC classification
- Type
- Paper
- Information
- Copyright
- © Cambridge University Press 2019
Footnotes
†
Supported by a NSERC Discovery Grant.
References
Besicovitch, A. and Rado, R. (1968) A plane set of measure zero containing circumferences of every radius. J. London Math. Soc. 43 717–719.CrossRefGoogle Scholar
Clarkson, K. L., Edelsbrunner, H., Guibas, L. J., Sharir, M. and Welzl, E. (1990) Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom. 5 99–160.CrossRefGoogle Scholar
Dvir, Z. (2009) On the size of Kakeya sets in finite fields. J. Amer. Math. Soc. 22 1093–1097.CrossRefGoogle Scholar
Ellenberg, J., Solymosi, J. and Zahl, J. (2016) New bounds on curve tangencies and orthogonalities. Discrete Anal. 18 1–22.CrossRefGoogle Scholar
Guth, L. and Katz, N. (2010) Algebraic methods in discrete analogs of the Kakeya problem. Adv. Math. 225 2828–2839.CrossRefGoogle Scholar
Kaplan, H., Sharir, M. and Shustin, E. (2010) On lines and joints. Discrete Comput. Geom. 44 838–843.CrossRefGoogle Scholar
Sharir, M. and Zahl, J. (2017) Cutting algebraic curves into pseudo-segments and applications. J. Combin. Theory Ser. A 150 1–35.CrossRefGoogle Scholar
Wolff, T. (1997) A Kakeya-type problem for circles. Amer. J. Math. 119 985–1026.CrossRefGoogle Scholar
Wolff, T. (1999) Recent work connected to the Kakeya problem. In Prospects in Mathematics, American Mathematical Society, pp. 129–162.Google Scholar
Zahl, J. (2012) On the Wolff circular maximal function. Illinois J. Math. 56 1281–1295.CrossRefGoogle Scholar
Zahl, J. (2015) A Szemerédi–Trotter type theorem in ℝ4. Discrete Comput. Geom. 54 513–572.CrossRefGoogle Scholar