No CrossRef data available.
Published online by Cambridge University Press: 22 June 2009
In this work we study edge weights for two specific families of increasing trees, which include binary increasing trees and plane-oriented recursive trees as special instances, where plane-oriented recursive trees serve as a combinatorial model of scale-free random trees given by the m = 1 case of the Barabási–Albert model. An edge e = (k, l), connecting the nodes labelled k and l, respectively, in an increasing tree, is associated with the weight we = |k − l|. We are interested in the distribution of the number of edges with a fixed edge weight j in a random generalized plane-oriented recursive tree or random d-ary increasing tree. We provide exact formulas for expectation and variance and prove a normal limit law for this quantity. A combinatorial approach is also presented and applied to a related parameter, the maximum edge weight.