Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T21:01:45.444Z Has data issue: false hasContentIssue false

The Expected Norm of Random Matrices

Published online by Cambridge University Press:  01 March 2000

YOAV SEGINER
Affiliation:
Check Point Software Technologies Ltd., 3A Jabotinsky St., Diamond Tower, Ramat Gan, 52520, Israel (e-mail: yoav@checkpoint.com)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We compare the Euclidean operator norm of a random matrix with the Euclidean norm of its rows and columns. In the first part of this paper, we show that if A is a random matrix with i.i.d. zero mean entries, then EAh [les ] Kh (E maxiai[bull ]h + E maxjaj[bull ]h), where K is a constant which does not depend on the dimensions or distribution of A (h, however, does depend on the dimensions). In the second part we drop the assumption that the entries of A are i.i.d. We therefore consider the Euclidean operator norm of a random matrix, A, obtained from a (non-random) matrix by randomizing the signs of the matrix's entries. We show that in this case, the best inequality possible (up to a multiplicative constant) is EAh [les ] (c log1/4 min {m, n})h (E maxiai[bull ]h + E maxjaj[bull ]h) (m, n the dimensions of the matrix and c a constant independent of m, n).

Type
Research Article
Copyright
2000 Cambridge University Press