Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T00:05:22.105Z Has data issue: false hasContentIssue false

First-Order Definability of Trees and Sparse Random Graphs

Published online by Cambridge University Press:  01 May 2007

TOM BOHMAN
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA (e-mail: tbohman@moser.math.cmu.edu, alan@random.math.cmu.edu, pikhurko@cmu.edu)
ALAN FRIEZE
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA (e-mail: tbohman@moser.math.cmu.edu, alan@random.math.cmu.edu, pikhurko@cmu.edu)
TOMASZ ŁUCZAK
Affiliation:
Department of Discrete Mathematics, Adam Mickiewicz University, Poznań 61-614, Poland (e-mail: tomasz@amu.edu.pl)
OLEG PIKHURKO
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA (e-mail: tbohman@moser.math.cmu.edu, alan@random.math.cmu.edu, pikhurko@cmu.edu)
CLIFFORD SMYTH
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA (e-mail: csmyth@math.mit.edu)
JOEL SPENCER
Affiliation:
Courant Institute, New York University, New York, NY 10012, USA (e-mail: spencer@cims.nyu.edu)
OLEG VERBITSKY
Affiliation:
Institut für Informatik, Humboldt Universität Berlin, D-10099 Berlin, Germany (e-mail: verbitsk@informatik.hu-berlin.de)

Abstract

Let D(G) be the smallest quantifier depth of a first-order formula which is true for a graph G but false for any other non-isomorphic graph. This can be viewed as a measure for the descriptive complexity of G in first-order logic.

We show that almost surely , where G is a random tree of order n or the giant component of a random graph with constant c<1. These results rely on computing the maximum of D(T) for a tree T of order n and maximum degree l, so we study this problem as well.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barbour, A. D. (1982) Poisson convergence and random graphs. Math. Proc. Camb. Phil. Soc. 92 349359.CrossRefGoogle Scholar
[2]Bollobás, B. (2001) Random Graphs, 2ndedn, Cambridge University Press.CrossRefGoogle Scholar
[3]Chung, F. and Lu, L. (2001) The diameter of sparse random graphs. Adv. Appl. Math. 26 257279.CrossRefGoogle Scholar
[4]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley–Interscience.CrossRefGoogle Scholar
[5]Kim, J. H., Pikhurko, O., Spencer, J. and Verbitsky, O. (2005) How complex are random graphs in first order logic? Random Struct. Alg. 26 119145.CrossRefGoogle Scholar
[6]Moon, J. W. (1968) On the maximum degree in a random tree. Michigan Math. J. 15 429432.CrossRefGoogle Scholar
[7]Ore, O. (1962) Theory of Graphs, AMS, Providence, RI.CrossRefGoogle Scholar
[8]Pikhurko, O., Spencer, J. and Verbitsky, O. (2005) Decomposable graphs and definitions with no quantifier alternation. To appear in Europ. J. Combin. The conference version (EuroComb'05) appeared in Discrete Math. & Theoretical Comput. Sci., Vol. AE, pp. 25–30.CrossRefGoogle Scholar
[9]Pikhurko, O., Spencer, J. and Verbitsky, O. (2006) Succinct definitions in the first order graph theory. Annals Pure Appl. Logic 139 74109.CrossRefGoogle Scholar
[10]Pikhurko, O., Veith, H. and Verbitsky, O. (2006) The first order definability of graphs: Upper bounds for quantifier rank. Discrete Appl. Math. 154 25112529.CrossRefGoogle Scholar
[11]Pikhurko, O. and Verbitsky, O. (2005) Descriptive complexity of finite structures: Saving the quantifier rank. J. Symb. Logic 70 419450.CrossRefGoogle Scholar
[12]Spencer, J. (2001) The Strange Logic of Random Graphs, Springer.CrossRefGoogle Scholar
[13]Stanley, R. P. (1997) Enumerative Combinatorics, Cambridge University Press.CrossRefGoogle Scholar
[14]Verbitsky, O. (2005) The first order definability of graphs with separators via the Ehrenfeucht game. Theoret. Comp. Sci. 343 158176.CrossRefGoogle Scholar