No CrossRef data available.
Published online by Cambridge University Press: 21 November 2002
A top to random shuffle of a deck of cards is performed by taking the top card off of the deck and replacing it in a randomly chosen position of the deck. We find approximations of the relative entropy of a deck of n cards after m successive top to random shuffles. Initially the relative entropy decays linearly and for larger m it decays geometrically at a rate that alters abruptly at m = n log n. It converges to an explicitly given expression when m = [n log n+cn] for a constant c.