Published online by Cambridge University Press: 07 October 2021
We define a new ribbon group action on ribbon graphs that uses a semidirect product of a permutation group and the original ribbon group of Ellis-Monaghan and Moffatt to take (partial) twists and duals, or twuals, of ribbon graphs. A ribbon graph is a fixed point of this new ribbon group action if and only if it is isomorphic to one of its (partial) twuals. This extends the original ribbon group action, which only used the canonical identification of edges, to the more natural setting of self-twuality up to isomorphism. We then show that every ribbon graph has in its orbit an orientable embedded bouquet and prove that the (partial) twuality properties of these bouquets propagate through their orbits. Thus, we can determine (partial) twualities via these one vertex graphs, for which checking isomorphism reduces simply to checking dihedral group symmetries. Finally, we apply the new ribbon group action to generate all self-trial ribbon graphs on up to seven edges, in contrast with the few, large, very high-genus, self-trial regular maps found by Wilson, and by Jones and Poultin. We also show how the automorphism group of a ribbon graph yields self-dual, -petrial or –trial graphs in its orbit, and produce an infinite family of self-trial graphs that do not arise as covers or parallel connections of regular maps, thus answering a question of Jones and Poulton.