Published online by Cambridge University Press: 01 November 2008
Let ai,bi, i = 0, 1, 2, . . . be drawn uniformly and independently from the unit interval, and let t be a fixed real number. Let a site (i, j) ∈ be open if ai + bj ≤ t, and closed otherwise. We obtain a simple, exact expression for the probability Θ(t) that there is an infinite path (oriented or not) of open sites, containing the origin. Θ(t) is continuous and has continuous first derivative except at the critical point (t=1), near which it has critical exponent (3 − )/2.