Article contents
On deficiency problems for graphs
Published online by Cambridge University Press: 27 September 2021
Abstract
Motivated by analogous questions in the setting of Steiner triple systems and Latin squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combinatorial Theory Series B, 2020] recently introduced the notion of graph deficiency. Given a global spanning property $\mathcal P$ and a graph $G$ , the deficiency $\text{def}(G)$ of the graph $G$ with respect to the property $\mathcal P$ is the smallest non-negative integer t such that the join $G*K_t$ has property $\mathcal P$ . In particular, Nenadov, Sudakov and Wagner raised the question of determining how many edges an n-vertex graph $G$ needs to ensure $G*K_t$ contains a $K_r$ -factor (for any fixed $r\geq 3$ ). In this paper, we resolve their problem fully. We also give an analogous result that forces $G*K_t$ to contain any fixed bipartite $(n+t)$ -vertex graph of bounded degree and small bandwidth.
- Type
- Paper
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
- 2
- Cited by