Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T22:13:07.185Z Has data issue: false hasContentIssue false

On Families of Subsets With a Forbidden Subposet

Published online by Cambridge University Press:  01 September 2009

JERROLD R. GRIGGS
Affiliation:
Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA (e-mail: griggs@math.sc.edu, lu@math.sc.edu)
LINYUAN LU
Affiliation:
Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA (e-mail: griggs@math.sc.edu, lu@math.sc.edu)

Abstract

Let ⊂ 2[n] be a family of subsets of {1, 2,. . ., n}. For any poset H, we say is H-free if does not contain any subposet isomorphic to H. Katona and others have investigated the behaviour of La(n, H), which denotes the maximum size of H-free families ⊂ 2[n]. Here we use a new approach, which is to apply methods from extremal graph theory and probability theory to identify new classes of posets H, for which La(n, H) can be determined asymptotically as n → ∞ for various posets H, including two-end-forks, up-down trees, and cycles C4k on two levels.

Type
Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bukh, B. (2008) Set families with a forbidden poset. Preprint: arXiv:0803.3840.Google Scholar
[2]Carroll, T. and Katona, G. O. H. (2008) Bounds on maximal families of sets not containing three sets with ABC, AB. Order 25 229236.CrossRefGoogle Scholar
[3]Chernoff, H. (1981) A note on an inequality involving the normal distribution. Ann. Probab. 9 533535.CrossRefGoogle Scholar
[4]De Bonis, A. and Katona, G. O. H. (2007) Largest families without an r-fork. Order 24 181191.CrossRefGoogle Scholar
[5]De Bonis, A., Katona, G. O. H. and Swanepoel, K. J. (2005) Largest family without ABCD. J. Combin. Theory Ser. A 111 331336.CrossRefGoogle Scholar
[6]Erdős, P. (1945) On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. 51 898902.CrossRefGoogle Scholar
[7]Erdős, P. and Simonovits, M. (1966) A limit theorem in graph theory. Studia Sci. Math. Hungar. 1 5157.Google Scholar
[8]Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. Soc. 52 10871091.CrossRefGoogle Scholar
[9]Fortuin, C. M., Kasteleyn, P. N. and Ginibre, J. (1971) Correlation inequalities for some partially ordered sets. Comm. Math. Phys. 22 89103.CrossRefGoogle Scholar
[10]Griggs, J. R. and Katona, G. O. H. (2008) No four subsets forming an N. J. Combin. Theory Ser. A 115 677685.CrossRefGoogle Scholar
[11]Katona, G. O. H. (2008) Forbidden inclusion patterns in the families of subsets (introducing a method). In Horizons of Combinatorics, Vol. 17 of Bolyai Society Mathematical Studies, Bolyai Mathematical Society, Budapest, and Springer, pp. 119140.CrossRefGoogle Scholar
[12]Sperner, E. (1928) Ein Satzüber Untermengen einer endlichen Menge. Math. Z. 27 544548.CrossRefGoogle Scholar
[13]Thanh, H. T. (1998) An extremal problem with excluded subposets in the Boolean lattice. Order 15 5157.CrossRefGoogle Scholar