Published online by Cambridge University Press: 12 September 2008
In [1] we introduced and studied for product hypergraphs where ℋi = (i,ℰi), the minimal size π(ℋn) of a partition of into sets that are elements of . The main result was that
if the ℋis are graphs with all loops included. A key step in the proof concerns the special case of complete graphs. Here we show that (1) also holds when the ℋi are complete d-uniform hypergraphs with all loops included, subject to a condition on the sizes of the i. We also present an upper bound on packing numbers.