Published online by Cambridge University Press: 22 January 2010
For random trees T generated by the binary search tree algorithm from uniformly distributed input we consider the subtree size profile, which maps k ∈ ℕ to the number of nodes in T that root a subtree of size k. Complementing earlier work by Devroye, by Feng, Mahmoud and Panholzer, and by Fuchs, we obtain results for the range of small k-values and the range of k-values proportional to the size n of T. In both cases emphasis is on the process view, i.e., the joint distributions for several k-values. We also show that the dynamics of the tree sequence lead to a qualitative difference between the asymptotic behaviour of the lower and the upper end of the profile.