Article contents
Separation Choosability and Dense Bipartite Induced Subgraphs
Published online by Cambridge University Press: 26 February 2019
Abstract
We study a restricted form of list colouring, for which every pair of lists that correspond to adjacent vertices may not share more than one colour. The optimal list size such that a proper list colouring is always possible given this restriction, we call separation choosability. We show for bipartite graphs that separation choosability increases with (the logarithm of) the minimum degree. This strengthens results of Molloy and Thron and, partially, of Alon. One attempt to drop the bipartiteness assumption precipitates a natural class of Ramsey-type questions, of independent interest. For example, does every triangle-free graph of minimum degree d contain a bipartite induced subgraph of minimum degree Ω(log d) as d→∞?
MSC classification
- Type
- Paper
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © Cambridge University Press 2019
Footnotes
This research was partly supported by a Van Gogh grant, reference 35513NM.
This author is partially supported by ANR Projects STINT (anr-13-bs02-0007) and GATO (anr-16-ce40-0009-01), and LabEx PERSYVAL-Lab (anr-11-labx-0025).
This author is partially supported by a Vidi grant (639.032.614) of the Netherlands Organisation for Scientific Research (NWO).
References
- 8
- Cited by