Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T09:24:51.218Z Has data issue: false hasContentIssue false

Teasing Apart Two Trees

Published online by Cambridge University Press:  01 November 2007

M. A. STEEL
Affiliation:
Biomathematics Research Centre,Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand (e-mail: m.steel@math.canterbury.ac.nz)
L. A. SZÉKELY
Affiliation:
Department of Mathematics, University of South Carolina, Columbia SC, USA (e-mail: szekely@math.sc.edu)

Abstract

A widely studied model for generating binary sequences is to ‘evolve’ them on a tree according to a symmetric Markov process. We show that under this model distinguishing the true (model) tree from a false one is substantially ‘easier’ (in terms of the sequence length needed) than determining the true tree. The key tool is a new and near-tight Ramsey-type result for binary trees.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alon, N., and Spencer, J. H. (1992) The Probabilistic Method, Wiley, New York.Google Scholar
[2]Bininda-Emonds, O. R. P., Brady, S. G., Kim, J. and Sanderson, M. J. (2001) Scaling of accuracy in extremely large phylogenetic trees. Pacific Symposium on Biocomputing 6 547558.Google Scholar
[3]Colonius, H. and Schulze, H. H. (1981) Tree structures for proximity data. British J. Math. Statist. Psych. 34 167180.CrossRefGoogle Scholar
[4]Daskalakis, C., Mossel, E. and Roch, S. (2006) Optimal phylogenetic reconstruction. Proc 38th annual ACM Symposium on Theory of Computing (STOC) 159–68. ACM Press, New York.Google Scholar
[5]Dekker, M. C. H. (1986) Reconstruction methods for derivation trees. Master's thesis, Vrije Universiteit, Amsterdam.Google Scholar
[6]Erdod, P. L., Steel, M. A., Székely, L. A. and Warnow, T. J. (1999) A few logs suffice to build (almost) all trees I. Random Struct. Alg. 14 153184.Google Scholar
[7]Evans, W., Kenyon, C., Peres, Y. and Schulman, L. J. (2000) Broadcasting on trees and the Ising model. Adv. Appl. Probab. 10 410433.Google Scholar
[8]Guindon, S. and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52 696704.CrossRefGoogle ScholarPubMed
[9]Lovász, L. (1979) Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest, and North-Holland.Google Scholar
[10]Mason, K. (1996) On a matter of uncertain parentage. Honours III project, University of Canterbury.Google Scholar
[11]Mossel, E. (1998) Recursive reconstruction on periodic trees. Random Struct. Alg. 13 8197.3.0.CO;2-O>CrossRefGoogle Scholar
[12]Mossel, E. (2004) Phase transitions in phylogeny Trans. Amer. Math. Soc. 356 23792404.CrossRefGoogle Scholar
[13]Mossel, E. and Peres, Y. (2003) Information flow on trees. Ann. Appl. Probab. 13 817844.CrossRefGoogle Scholar
[14]Neyman, J. (1971) Molecular studies of evolution: A source of novel statistical problems. In Statistical Decision Theory and Related Topics(Gupta, S. S. and Yackel, J., eds), New York, Academic Press, pp. 127.Google Scholar
[15]Rokas, A. and Carroll, S. B. (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22 13371344.CrossRefGoogle ScholarPubMed
[16]Semple, C. and Steel, M. (2003) Phylogenetics, Oxford University Press.CrossRefGoogle Scholar
[17]Stamatakis, A. P., Ludwig, T. and Meier, H. (2004). A fast program for maximum likelihood-based inference of large phylogenetic tress. In Proc. 2004 ACM Symposium on Applied Computing, ACM Press, New York, pp. 197201.CrossRefGoogle Scholar
[18]Steel, M. (1989) Distributions on bicoloured evolutionary trees. PhD thesis, Massey University, Palmerston North, New Zealand.Google Scholar
[19]Steel, M. and Charleston, M. (1995) Five surprising properties of parsimoniously coloured trees. Bull. Math. Biol. 57 367375.CrossRefGoogle Scholar
[20]Steel, M. A., Hendy, M. D. and Penny, D. (1998) Reconstructing phylogenies from nucleotide pattern frequencies: A survey and some new results. Discrete Appl. Math. 88 367396.CrossRefGoogle Scholar
[21]Steel, M. A. and Székely, L. A. (1999) Inverting random functions. Ann. Combin. 3 103113.CrossRefGoogle Scholar
[22]Steel, M. A. and Székely, L. A. (2002) Inverting random functions II: Explicit bounds for the discrete maximum likelihood estimation, with applications. SIAM J. Discrete Math. 15 562575.CrossRefGoogle Scholar