Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T21:30:22.077Z Has data issue: false hasContentIssue false

Topological Cliques in Graphs

Published online by Cambridge University Press:  12 September 2008

János komlós
Affiliation:
Rutgers University and Hungarian Academy of Sciences
Endre Szemerédi
Affiliation:
Rutgers University and Hungarian Academy of Sciences

Abstract

Let f(t) be the largest integer such that every graph with average degree t has a topological clique with f(i) vertices. It is widely believed that . Here we prove the weaker estimate .

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ajtai, M., Komlós, J. and Szemerédi, E. (1979) Topological complete subgraphs in random graphs. Studia Sci. Math. Hung. 14, 293297.Google Scholar
[2]Bollobás, B. (1978) Extremal Graph Theory, Academic Press, London.Google Scholar
[3]Bollobás, B. and Catlin, P. (1981) Topological cliques of random graphs. J. Combinatorial Theory 30B, 224227.CrossRefGoogle Scholar
[4]Erdős, P. and Fajtlowicz, S. (1981) On the conjecture of Hajós. Combinatorica 1, 141143.CrossRefGoogle Scholar
[5]Erdős, P. and Hajnal, A. (1969) On complete topological subgraphs of certain graphs. Annales Univ. Sci. Budapest 7, 193199.Google Scholar
[6]Komlós, J. and Sós, V. (manuscript) Regular subgraphs of graphs.Google Scholar
[7]Lov´sz, L. (1979) Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest.Google Scholar
[8]Mader, W. (1967) Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Annalen 174, 265268.CrossRefGoogle Scholar
[9]Mader, W. (1972) Hinreichende Bedingungen fur die Existenz von Teilgraphen die zu einem vollständigen Graphen homöomorph sind. Math. Nachr. 53, 145150.CrossRefGoogle Scholar
[10]Szemerédi, E. (1976) Regular partitions of graphs. Colloques Internationaux C.N.R.S. N° – 260 - Problèmes Combinatoires et Théorie des Graphes, Orsay, 399401.Google Scholar
[11]Szemerédi, E. (1975) On a set containing no k elements in arithmetic progression. Acta Arithmetica XXVII, 199245.CrossRefGoogle Scholar