Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T08:42:10.151Z Has data issue: false hasContentIssue false

Turán Number of an Induced Complete Bipartite Graph Plus an Odd Cycle

Published online by Cambridge University Press:  16 July 2018

BEKA ERGEMLIDZE
Affiliation:
Department of Mathematics, Central European University, 1051 Budapest, Nádor utca 9 (e-mail: beka.ergemlidze@gmail.com, abhishekmethuku@gmail.com)
ERVIN GYŐRI
Affiliation:
MTA Rényi Institute, 1053 Budapest, Reáltanoda utca 13-15 and Department of Mathematics, Central European University, 1051 Budapest, Nádor utca 9 (e-mail: gyori.ervin@renyi.mta.hu)
ABHISHEK METHUKU
Affiliation:
Department of Mathematics, Central European University, 1051 Budapest, Nádor utca 9 (e-mail: beka.ergemlidze@gmail.com, abhishekmethuku@gmail.com)

Abstract

Let k ⩾ 2 be an integer. We show that if s = 2 and t ⩾ 2, or s = t = 3, then the maximum possible number of edges in a C2k+1-free graph containing no induced copy of Ks,t is asymptotically equal to (ts + 1)1/s(n/2)2−1/s except when k = s = t = 2.

This strengthens a result of Allen, Keevash, Sudakov and Verstraëte [1], and answers a question of Loh, Tait, Timmons and Zhou [14].

Type
Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Allen, P., Keevash, P., Sudakov, B. and Verstraëte, J. (2014) Turán numbers of bipartite graphs plus an odd cycle. J. Combin. Theory Ser. B 106 134162.Google Scholar
[2] Alon, N., Rónyai, L. and Szabó, T. (1999) Norm-graphs: Variations and applications. J. Combin. Theory Ser. B 76 280290.Google Scholar
[3] Blakley, R. G. and Roy, P. (1965) A Hölder type inequality for symmetric matrices with nonnegative entries. Proc. Amer. Math. Soc. 16 12441245.Google Scholar
[4] Bollobás, B. and Győri, E. (2008) Pentagons vs. triangles. Discrete Math. 308 43324336.Google Scholar
[5] Brown, W. G. (1966) On graphs that do not contain a Thomsen graph. Canad. Math. Bull. 9 281285.Google Scholar
[6] Erdős, P. and Gallai, T. (1959) On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar. 10 337356.Google Scholar
[7] Erdős, P. and Simonovits, M. (1982) Compactness results in extremal graph theory. Combinatorica 2 275288.Google Scholar
[8] Erdős, P., Rényi, A. and Sós, V. T. (1966) On a problem of graph theory. Stud Sci. Math. Hungar. 1 215235.Google Scholar
[9] Füredi, Z. (1996) An upper bound on Zarankiewicz' problem. Combin. Probab. Comput. 5 2933.Google Scholar
[10] Füredi, Z. (1996) New asymptotics for bipartite Turán numbers. J. Combin. Theory Ser. A 75 141144.Google Scholar
[11] Győri, E. and Li, H. (2012) The maximum number of triangles in C 2k+1-free graphs. Combin. Probab. Comput. 21 187191.Google Scholar
[12] Kollár, J., Rónyai, L. and Szabó, T. (1996) Norm-graphs and bipartite Turán numbers. Combinatorica 16 399406.Google Scholar
[13] Kővári, T., Sós, V. and Turán, P. (1954) On a problem of K. Zarankiewicz. Colloquium Math. 3 5057.Google Scholar
[14] Loh, P., Tait, M., Timmons, C. and Zhou, R. M. (2017) Induced Turán numbers. Combin. Probab. Comput. 27 274288.Google Scholar