Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T17:44:33.527Z Has data issue: false hasContentIssue false

A Cartesian Scheme for Compressible Multimaterial Hyperelastic Models with Plasticity

Published online by Cambridge University Press:  31 October 2017

Alexia de Brauer*
Affiliation:
Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France. CNRS, IMB, UMR 5251, F-33400 Talence, France. INRIA, F-33400 Talence, France
Angelo Iollo*
Affiliation:
Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France. CNRS, IMB, UMR 5251, F-33400 Talence, France. INRIA, F-33400 Talence, France
Thomas Milcent*
Affiliation:
Univ. Bordeaux, I2M, UMR 5295, F-33400 Talence, France. Arts et Métiers Paristech, F-33607 Pessac, France
*
*Corresponding author. Email addresses:alexia.de-brauer@math.u-bordeaux1.fr(A. de Brauer), angelo.iollo@math.u-bordeaux1.fr(A. Iollo), thomas.milcent@u-bordeaux.fr(T. Milcent)
*Corresponding author. Email addresses:alexia.de-brauer@math.u-bordeaux1.fr(A. de Brauer), angelo.iollo@math.u-bordeaux1.fr(A. Iollo), thomas.milcent@u-bordeaux.fr(T. Milcent)
*Corresponding author. Email addresses:alexia.de-brauer@math.u-bordeaux1.fr(A. de Brauer), angelo.iollo@math.u-bordeaux1.fr(A. Iollo), thomas.milcent@u-bordeaux.fr(T. Milcent)
Get access

Abstract

We describe a numerical model to simulate the non-linear elasto-plastic dynamics of compressible materials. The model is fully Eulerian and it is discretized on a fixed Cartesian mesh. The hyperelastic constitutive law considered is neohookean and the plasticity model is based on a multiplicative decomposition of the inverse deformation tensor. The model is thermodynamically consistent and it is shown to be stable in the sense that the norm of the deviatoric stress tensor beyond yield is non increasing. The multimaterial integration scheme is based on a simple numerical flux function that keeps the interfaces sharp. Numerical illustrations in one to three space dimensions of high-speed multimaterial impacts in air are presented.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Barton, P.T., Deiterding, R., Meiron, D., and Pullin, D.. Eulerian adaptative finite difference method for high-velocity impact and penetration problems. Journal of Computational Physics, 240:7699, 2013.Google Scholar
[2] Barton, P.T., Drikakis, D., Romenski, E., and Titarev, V.A.. Exact and approximate solutions of Riemann problems in non-linear elasticity. Journal of Computational Physics, 228(18):70467068, 2009.CrossRefGoogle Scholar
[3] Cottet, G.H., Maitre, E., and Milcent, T.. Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM: Mathematical Modelling and Numerical Analysis, 42:471492, 2008.Google Scholar
[4] Davis, S.. Simplified second-order Godunov-type methods. SIAM Journal on Scientific and Statistical Computing, 9(3):445473, 1988.CrossRefGoogle Scholar
[5] de Brauer, A., Iollo, A., and Milcent, T.. A Cartesian scheme for compressible multimaterial models in 3d. Journal of Computational Physics, 313:121143, 2016.Google Scholar
[6] Favrie, N. and Gavrilyuk, S. L.. Diffuse interface model for compressible fluid – Compressible elastic-plastic solid interaction. Journal of Computational Physics, 231(7):26952723, 2012.Google Scholar
[7] Favrie, N. and Gavrilyuk, S.L.. Dynamics of shock waves in elastic-plastic solids. ESAIM: Proceedings, 33:5067, 2011.CrossRefGoogle Scholar
[8] Favrie, N., Gavrilyuk, S.L., and Saurel, R.. Solid-fluid diffuse interface model in cases of extreme deformations. Journal of Computational Physics, 228(16):60376077, 2009.CrossRefGoogle Scholar
[9] Gavrilyuk, S.L., Favrie, N., and Saurel, R.. Modelling wave dynamics of compressible elastic materials. Journal of Computational Physics, 227(5):29412969, 2008.CrossRefGoogle Scholar
[10] Godunov, S.K.. Elements of continuum mechanics. Nauka Moscow, 1978.Google Scholar
[11] Gorsse, Y., Iollo, A., Milcent, T., and Telib, H.. A simple cartesian scheme for compressible multimaterials. Journal of Computational Physics, 272:772798, 2014.Google Scholar
[12] Hill, D.J., Pullin, D., Ortiz, M., and Meiron, D.. An Eulerian hybridWENO centered-difference solver for elasticplastic solids. Journal of Computational Physics, 229(24):90539072, 2010.Google Scholar
[13] Iollo, A., Milcent, T., and Telib, H.. A sharp contact discontinuity scheme for multimaterial models. In Finite Volumes for Complex Applications VI, Problems & Perspectives, volume 4 of Springer Proceedings in Mathematics, pages 581588. Springer Berlin Heidelberg, 2011.CrossRefGoogle Scholar
[14] Jiang, G.S. and Shu, C.W.. Efficient implementation of Weighted ENO schemes. Journal of Computational Physics, 126(1):202228, 1996.Google Scholar
[15] Kluth, G. and Despres, B.. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. Journal of Computational Physics, 229(24):90929118, 2010.Google Scholar
[16] Lee, E.H. and Liu, D.T.. Finite-strain elastic-plastic theory with application to plane-wave analysis. Journal of Applied Physics, 38(1):1927, 1967.CrossRefGoogle Scholar
[17] Maire, P.-H., Abgrall, R., Breil, J., Loubère, R., and Rebourcet, B.. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids. Journal of Computational Physics, 235(C):626665, 2013.Google Scholar
[18] Miller, G.H. and Colella, P.. A high-order eulerian godunov method for elasticplastic flow in solids. Journal of Computational Physics, 167(1):131176, 2001.Google Scholar
[19] Miller, G.H. and Colella, P.. A conservative three-dimensional eulerian method for coupled solid-fluid shock capturing. Journal of Computational Physics, 183(1):2682, 2002.Google Scholar
[20] Naghdi, P.M.. A critical review of the state of finite plasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP, 41(3):315394, 1990.Google Scholar
[21] Ndanou, S., Favrie, N., and Gavrilyuk, S.. Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation. Journal of Computational Physics, 295:523555, 2015.Google Scholar
[22] López Ortega, A, Lombardini, M, Pullin, D I, and Meiron, D I. Numerical simulation of elasticplastic solid mechanics using an Eulerian stretch tensor approach and HLLD Riemann solver. Journal of Computational Physics, 257(PA):414441, 2014.Google Scholar
[23] Plohr, B.J. and Sharp, D.H.. A conservative eulerian formulation of the equations for elastic flow. Advances in Applied Mathematics, 9:481499, 1988.Google Scholar
[24] Plohr, B.J. and Sharp, D.H.. A conservative formulation for plasticity. Advances in Applied Mathematics, 13:462493, 1992.Google Scholar
[25] Sijoy, C.D. and Chaturvedi, S.. An Eulerian multi-material scheme for elasticplastic impact and penetration problems involving large material deformations. European Journal of Mechanics - B/Fluids, 53:85100, 2015.Google Scholar
[26] Toro, E.F., Spruce, M., and Speares, W.. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4:2534, 1994.Google Scholar