Article contents
An Entropic Scheme for an Angular Moment Model for the Classical Fokker-Planck-Landau Equation of Electrons
Published online by Cambridge University Press: 03 June 2015
Abstract
In plasma physics domain, the electron transport is described with the Fokker-Planck-Landau equation. The direct numerical solution of the kinetic equation is usually intractable due to the large number of independent variables. That is why we propose in this paper a new model whose derivation is based on an angular closure in the phase space and retains only the energy of particles as kinetic dimension. To find a solution compatible with physics conditions, the closure of the moment system is obtained under a minimum entropy principle. This model is proved to satisfy the fundamental properties like a H theorem. Moreover an entropic discretization in the velocity variable is proposed on the semi-discrete model. Finally, we validate on numerical test cases the fundamental properties of the full discrete model.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Global Science Press Limited 2014
References
- 7
- Cited by